Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present KeyMorph, a deep learning-based image registration framework that relies on automatically detecting corresponding keypoints. State-of-the-art deep learning methods for registration often are not robust to large misalignments, are not interpretable, and do not incorporate the symmetries of the problem. In addition, most models produce only a single prediction at test-time. Our core insight which addresses these shortcomings is that corresponding keypoints between images can be used to obtain the optimal transformation via a differentiable closed-form expression. We use this observation to drive the end-to-end learning of keypoints tailored for the registration task, and without knowledge of ground-truth keypoints. This framework not only leads to substantially more robust registration but also yields better interpretability, since the keypoints reveal which parts of the image are driving the final alignment. Moreover, KeyMorph can be designed to be equivariant under image translations and/or symmetric with respect to the input image ordering. Finally, we show how multiple deformation fields can be computed efficiently and in closed-form at test time corresponding to different transformation variants. We demonstrate the proposed framework in solving 3D affine and spline-based registration of multi-modal brain MRI scans. In particular, we show registration accuracy that surpasses current state-of-the-art methods, especially in the context of large displacements. Our code is available at https://github.com/alanqrwang/keymorph.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591968 | PMC |
http://dx.doi.org/10.1016/j.media.2023.102962 | DOI Listing |