Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Historically, individuals with hearing impairments have faced neglect, lacking the necessary tools to facilitate effective communication. However, advancements in modern technology have paved the way for the development of various tools and software aimed at improving the quality of life for hearing-disabled individuals. This research paper presents a comprehensive study employing five distinct deep learning models to recognize hand gestures for the American Sign Language (ASL) alphabet. The primary objective of this study was to leverage contemporary technology to bridge the communication gap between hearing-impaired individuals and individuals with no hearing impairment. The models utilized in this research include AlexNet, ConvNeXt, EfficientNet, ResNet-50, and VisionTransformer were trained and tested using an extensive dataset comprising over 87,000 images of the ASL alphabet hand gestures. Numerous experiments were conducted, involving modifications to the architectural design parameters of the models to obtain maximum recognition accuracy. The experimental results of our study revealed that ResNet-50 achieved an exceptional accuracy rate of 99.98%, the highest among all models. EfficientNet attained an accuracy rate of 99.95%, ConvNeXt achieved 99.51% accuracy, AlexNet attained 99.50% accuracy, while VisionTransformer yielded the lowest accuracy of 88.59%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535774 | PMC |
http://dx.doi.org/10.3390/s23187970 | DOI Listing |