Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Refractory high-entropy alloys (RHEAs) are among the promising candidates for the design of structural materials in advanced nuclear energy systems. The effects of Cr, V, Ta, and Ti elements and ball milling on the microstructural evolution and mechanical properties of model RHEAs were investigated. The results show that W-rich BCC1 and Ta-rich BCC2 solid solution phases were generated after a long milling duration. After high-temperature sintering, the (Cr, Ta)-rich phase associated with the Laves phase was observed in the Cr-containing model RHEAs. In addition, a high level of Ti, Ta, and V contents promoted the in situ formation of oxide particles in the alloys. Complex TiTaO and TaVO oxide phases were identified by TEM, which suggests a solid-state reaction of Ti-O, Ta-O, and V-O subjected to high-energy ball milling. The oxide particles are uniformly dispersed in the BCC matrix, which can result in dispersion strengthening and the enhancement of mechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532749 | PMC |
http://dx.doi.org/10.3390/ma16186194 | DOI Listing |