98%
921
2 minutes
20
Background: Super-enhancers (SEs), which activate genes involved in cell-type specificity, have mainly been defined as genomic regions with top-ranked enrichment(s) of histone H3 with acetylated K27 (H3K27ac) and/or transcription coactivator(s) including a bromodomain and extra-terminal domain (BET) family protein, BRD4. However, BRD4 preferentially binds to multi-acetylated histone H4, typically with acetylated K5 and K8 (H4K5acK8ac), leading us to hypothesize that SEs should be defined by high H4K5acK8ac enrichment at least as well as by that of H3K27ac.
Results: Here, we conducted genome-wide profiling of H4K5acK8ac and H3K27ac, BRD4 binding, and the transcriptome by using a BET inhibitor, JQ1, in three human glial cell lines. When SEs were defined as having the top ranks for H4K5acK8ac or H3K27ac signal, 43% of H4K5acK8ac-ranked SEs were distinct from H3K27ac-ranked SEs in a glioblastoma stem-like cell (GSC) line. CRISPR-Cas9-mediated deletion of the H4K5acK8ac-preferred SEs associated with MYCN and NFIC decreased the stem-like properties in GSCs.
Conclusions: Collectively, our data highlights H4K5acK8ac's utility for identifying genes regulating cell-type specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523799 | PMC |
http://dx.doi.org/10.1186/s12864-023-09659-w | DOI Listing |
Glioblastoma (GBM) represents an extremely aggressive brain malignancy with limited treatment options, difficult prognosis and a highly heterogeneous cellular architecture, including a subpopulation of cancer stem-like cells (CSCs). These CSCs frequently rely on developmental signaling pathways such as Sonic Hedgehog (SHH), which are typically dormant in adult tissue but reactivated in tumors. This study aimed to investigate how SHH pathway inhibition affects both bulk GBM cells (GBMCs) and CD133 + GBM cells (GBM CSCs), with particular emphasis on the influence of astrocyte co-culture, which more closely mimics the brain tumor microenvironment.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and treatment resistance. This review provides a comprehensive overview of canonical and non-canonical NF-κB signaling pathways and their molecular mechanisms in GBM, with a focus on their regulation in glioma stem-like cells (GSCs), interactions with key oncogenic factors (including STAT3, FOSL1, and TRPM7), and roles in maintaining tumor stemness, metabolic adaptation, and angiogenesis.
View Article and Find Full Text PDFBrain Sci
August 2025
Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid proliferation, invasiveness, therapeutic resistance, and an immunosuppressive tumor microenvironment. A subpopulation of glial stem-like cells (GSCs) within GBM tumors contributes significantly to tumor initiation, progression, and relapse, displaying remarkable adaptability to oxidative stress and metabolic reprogramming. Recent evidence implicates the atypical kinases RIOK1 and RIOK2 in promoting GBM growth and proliferation through their interaction with oncogenic pathways such as AKT and c-Myc.
View Article and Find Full Text PDFCell Rep
August 2025
CRIC2NA, CNRS, Inserm, Nantes Université, University Angers, 44000 Nantes, France; Équipe Labellisée Ligue contre le Cancer, 75013 Paris, France; Institut de Cancérologie de l'Ouest, 44800 Saint Herblain, France. Electronic address:
While locating in different microenvironments, glioblastoma stem-like cells (GSCs) receive maintenance signals and information to exploit neurovascular tracts. Although the cell adhesion mechanisms to blood vessels have been explored, the mediators guiding GSC interaction with the endothelial cells and their matrix remain incompletely resolved. Here, we identify junctional adhesion molecule C (JAMC) as a key regulator of heterophilic and homophilic interactions of GSC to endothelial surfaces.
View Article and Find Full Text PDFActa Neuropathol Commun
August 2025
Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania.
Endothelial transdifferentiation represents a multifaceted process wherein glioma stem cells (GSCs) gradually adopt endothelial characteristics, marked by the expression of endothelial markers (CD31, CD34) and functional traits, while concurrently relinquishing their stem-like properties. This phenomenon is heterogenous in glioblastoma (GBM) samples, but holds importance in terms of prognosis. Typically occurring within hypoxic environments, particularly in perinecrotic regions, endothelial transdifferentiation is influenced by the secretome of neighboring cells, which orchestrates the activation of various signaling pathways including Notch during endothelial lineage commitment, PI3K/AKT, Wnt/β-catenin and epithelial-mesenchymal transition (EMT) during both commitment and maturation.
View Article and Find Full Text PDF