A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12975-023-01192-yDOI Listing

Publication Analysis

Top Keywords

amino acids
8
synaptic transmission
8
deleterious effects
8
hypoxia
7
identification non-excitatory
4
non-excitatory amino
4
acids transporters
4
transporters mediating
4
irreversible
4
mediating irreversible
4

Similar Publications