98%
921
2 minutes
20
The underlying atomistic mechanism of deformation is a central problem in mechanics and materials science. Whereas deformation of crystalline metals is fundamentally understood, the understanding of deformation of amorphous metals lacks behind, particularly identifying the involved temporal and spatial scales. Here, we reveal that at small scales the size-dependent deformation behavior of amorphous metals significantly deviates from homogeneous flow, exhibiting increasing deformation rate with reducing size and gradually shifted composition. This transition suggests the deformation mechanism changes from collective atomic transport by viscous flow to individual atomic transport through interface diffusion. The critical length scale of the transition is temperature dependent, exhibiting a maximum at the glass transition. While viscous flow does not discriminate among alloy constituents, diffusion does and the constituent element with higher diffusivity deforms faster. Our findings yield insights into nano-mechanics and glass physics and may suggest alternative processing methods to epitaxially grow metallic glasses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522620 | PMC |
http://dx.doi.org/10.1038/s41467-023-41582-2 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department Chemie- und Bioingenieurwesen, Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058, Erlangen, Germany.
The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.
View Article and Find Full Text PDFAnal Sci
September 2025
Frontier Laboratories Ltd., 4-16-20, Saikon, Koriyama, Fukushima, 963-8862, Japan.
Biomass-based polymers such as poly(lactic acid) (PLA) have attracted much attention, because they are renewable, biocompatible, and nontoxic to the environment and have been used in various fields such as biomedical, agricultural, and food packaging industries. However, one of the common drawbacks of PLA-based materials is their low glass transition temperature in the amorphous state, while adding phenylphosphonic acid zinc salt (PPA-Zn) as a nucleating agent was found to be a promising method to improve the physical property of PLA. On the other hand, degradation of PLA-based materials in the environment may cause the pollution from the metal of a nucleating agent in PLA and quantification of nucleating agents in polymers is of interest.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
Stainless-steel substrates have grown in importance in the development of planar sorptive phases. However, the reduced wettability of polished sheets makes difficult their functionalization. This limitation can be solved by using amorphous silica gel microparticles as superficial guides.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDF