Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leishmaniasis refers to a collection of diseases caused by protozoa from the genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515597PMC
http://dx.doi.org/10.1021/acsomega.3c04878DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
leishmanicidal activity
8
guanidine compounds
8
development leishmanicidal
4
compounds
4
leishmanicidal compounds
4
compounds bioconjugation
4
bioconjugation antimicrobial
4
peptides antileishmanial
4
antileishmanial guanidines
4

Similar Publications

The pH-responsive regulator PlPacC and GATA transcription factor PlAreB are involved in the regulation of the biosynthesis of the antifungal lipopeptaibols leucinostatins in Purpureocillium lilacinum.

Microbiol Res

August 2025

Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Joint Research Unit 1158 BioEcoAgro, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium. Electronic address:

The biocontrol fungus Purpureocillium lilacinum PLBJ-1 produces leucinostatins, a class of non-ribosomal peptides (NRPs) with broad-spectrum antimicrobial activities. However, the molecular mechanisms underlying the optimization of culture conditions for leucinostatin production remain unexplored. Previous research showed that PLBJ-1 synthesizes leucinostatins more effectively in hand-made Potato Dextrose Broth (PDB-M) than in commercially available PDB (PDB-C).

View Article and Find Full Text PDF

Drice negatively regulates cellular and humoral immunity of Drosophila melanogaster.

Mol Immunol

September 2025

Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, 221005, India. Electronic address:

The innate immune response is a double-edged sword in insects, comprising the humoral and cellular mechanisms to fight and eliminate pathogens. The humoral response is achieved by the production of antimicrobial peptides, which are secreted in the hemolymph. The cellular responses are mediated by phagocytosis, encapsulation and melanization.

View Article and Find Full Text PDF

The interaction between the skin microbiome and antimicrobial peptides within the epidermal immune microenvironment: Bridging insights into atopic dermatitis.

Allergol Int

September 2025

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan. Electronic address:

The epidermal immune microenvironment is a multifaceted system in which the interplay between the skin microbiome and antimicrobial peptides plays a pivotal role in sustaining skin homeostasis and preventing dysbiosis. Disruption of these interactions can lead to inflammatory skin conditions such as atopic dermatitis. This review aims to explore the complex mechanisms by which antimicrobial peptides and the skin microbiome communicate within the epidermal immune microenvironment, emphasizing causal dynamics and the dual role of antimicrobial peptides.

View Article and Find Full Text PDF

Integrative Strategies Against Multidrug-Resistant Bacteria: Synthesizing Novel Antimicrobial Frontiers for Global Health.

Microb Pathog

September 2025

Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Postal code 442001, Wardha, Maharashtra, India.

Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review.

View Article and Find Full Text PDF

Lithobates palmipes is a frog species whose skin secretions contain peptides belonging to the ranatuerin, brevinin, and temporin families. In this study, the peptide ranatuerin-2PMe was isolated and evaluated for its antimicrobial, hemolytic, antiproliferative, and chemotactic activities. Ranatuerin-2PMe (2933.

View Article and Find Full Text PDF