Manifold-based sparse representation for opinion mining.

Sci Rep

School of Engineering, Damghan University, Damghan, Iran.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

What the consumer thinks about an organization's products, services, and events is a crucial performance indicator for businesses. The brief opinion pieces were quickly published on websites and social media platforms and have been analyzed by machine learning methods. The classical text feature representation methods suffer from high dimensionality, sparsity, noisy, irrelevant and redundant information. This paper focuses on how to enhance feature representation for opinion mining. Some nonlinear feature selection methods based on manifold assumption have been exploited to resolve these problems. The inherent manifold configuration was commonly ascertained through a nearest neighbor graph, whereby the neighbors in the current techniques may exhibit diverse polarities. To alleviate this burden, it is proposed to exploit both manifold assumption and sparse property as prior knowledge for opinion representation to learn intrinsic structure from data. First, the graph representation of user reviews based on the mentioned prior knowledge is learned. Then, the spectral properties of the learned graph are exploited to present data in a new feature space. The proposed algorithm is applied to four various common input features on two benchmark datasets, the Internet Movie Database (IMDB) and the Amazon review dataset. Our experiments reveal that the proposed algorithm yields considerable enhancements in terms of F-measure, accuracy, and other standard performance measures compared to the combination of state-of-the-art features with various classifiers. The highest classification accuracies of 99.15 and 91.97 are obtained in the proposed method on IMDB and Amazon using a linear SVM classifier, respectively. The impact of the parameters of the proposed algorithm is also investigated in this paper. The incorporation of a sparse manifold-based representation has led to noteworthy advancements beyond the baseline, and this success serves to validate the underlying assumptions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517976PMC
http://dx.doi.org/10.1038/s41598-023-43088-9DOI Listing

Publication Analysis

Top Keywords

proposed algorithm
12
representation opinion
8
opinion mining
8
feature representation
8
manifold assumption
8
prior knowledge
8
imdb amazon
8
representation
6
proposed
5
manifold-based sparse
4

Similar Publications

IntroductionThe use of digital solutions including patient-reported outcomes is limited to follow-up of patients with established diagnoses but is rarely used as first step of the diagnostic process substituting a personal contact with a health professional. We report on the diagnostic validity and cost per patient implications based on a feasibility study of a new virtual diagnostic service (VDS) for common neurological sleep disorders that, as a first step, involves the collection and automated analysis of self-reported digital patient data.MethodsThe VDS was established at the Odense University Hospital, Denmark.

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Predicting nucleic acid binding sites by attention map-guided graph convolutional network with protein language embeddings and physicochemical information.

Brief Bioinform

August 2025

School of Information and Artificial Intelligence, Anhui Agricultural University, 130 Changjiang Road, Shushan District, Hefei, Anhui 230036, China.

Protein-nucleic acid binding sites play a crucial role in biological processes such as gene expression, signal transduction, replication, and transcription. In recent years, with the development of artificial intelligence, protein language models, graph neural networks, and transformer architectures have been adopted to develop both structure-based and sequence-based predictive models. Structure-based methods benefit from the spatial relationship between residues and have shown promising performance.

View Article and Find Full Text PDF

Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition.

View Article and Find Full Text PDF

Integrating multiple microRNA functional similarity networks for improved disease-microRNA association prediction.

Biol Methods Protoc

September 2025

School of Information and Communications Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam.

MicroRNAs (miRNAs) play a critical role in disease mechanisms, making the identification of disease-associated miRNAs essential for precision medicine. We propose a novel computational method, multiplex-heterogeneous network for MiRNA-disease associations (MHMDA), which integrates multiple miRNA functional similarity networks and a disease similarity network into a multiplex-heterogeneous network. This approach employs a tailored random walk with restart algorithm to predict disease-miRNA associations, leveraging the complementary information from experimentally validated and predicted miRNA-target interactions, as well as disease phenotypic similarities.

View Article and Find Full Text PDF