A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-omics insights into the positive role of strigolactone perception in barley drought response. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response.

Results: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley.

Conclusions: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515045PMC
http://dx.doi.org/10.1186/s12870-023-04450-1DOI Listing

Publication Analysis

Top Keywords

drought
7
multi-omics insights
4
insights positive
4
positive role
4
role strigolactone
4
strigolactone perception
4
barley
4
perception barley
4
barley drought
4
drought response
4

Similar Publications