Biochar supported nano core-shell (TiO/CoFeO) for wastewater treatment.

Environ Res

Department of Clinical Laboratorie, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of ScientificResearch, Taif University, Taif, Saudi Arabia.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The porous structure of biochar, its large surface area, and its anti-oxidant properties are extensively used for pollutant removal strategies. The literature to date has reported that the biochar assisted metal-oxide core-shells have a dominating degradation ability under solar irradiation. Therefore, this study is significantly focused on cinnamon biochar as an active anti-oxidant agent incorporated in titania-cobalt ferrite nanocore-shell (Biochar/TiO/CoFeO) structures for the first time in wastewater treatment against chlorophenol pollutants. Pure materials, core-shells, and biochar aided composites were synthesized by chemical methods, and their characteristics were analyzed using various instrumentation techniques. The diffraction outcomes of Biochar/TiO/CoFeO showed the mixed phases containing biochar, TiO, and CoFeO. The morphological characteristics revealed that the biochar creates porosity and a peripheral layer covering the core-shell. Meanwhile, absorption studies of TiO/CoFeO core-shell and Biochar/TiO/CoFeO samples achieved 65% and 92% degradation efficiencies when exposed to visible light against chlorophenol pollutants, respectively. All these results confirm the presence of distinct functional groups as well as the combined synergistic effects that activated the charge separation, resulting in the successful destruction of water pollutants. In addition, the highly efficient Biochar/TiO/CoFeO sample was recycled, and the efficiency was maintained stable for five repeated degradation processes. Thus, Biochar/TiO/CoFeO will be utilized to expand the possibilities for biofuel generation and energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117169DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
8
chlorophenol pollutants
8
biochar
7
biochar/tio/cofeo
5
biochar supported
4
supported nano
4
nano core-shell
4
core-shell tio/cofeo
4
tio/cofeo wastewater
4
treatment porous
4

Similar Publications

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

Wastewater analysis of chemical markers of public health concern at small spatial scales: A scoping review.

PLOS Glob Public Health

September 2025

Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Wastewater analysis is a promising approach to obtaining population-based health information. It has proven useful for different applications, including monitoring illicit drugs or assessing population-level exposure to chemicals. Studies have often analysed samples from wastewater treatment plants, which does not allow for small-scale intra-sewershed differentiations needed for a detailed assessment of the target population.

View Article and Find Full Text PDF

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF