Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The knowledge of the morphology and morphometry of peripheral nerves is essential for developing neural interfaces and understanding nerve regeneration in basic and applied research. Currently, the most adopted animal model is the rat, even though recent studies have suggested that the neuroanatomy of large animal models is more comparable to humans. The present knowledge of the morphological structure of large animal models is limited; therefore, the present study aims to describe the morphological characteristics of the Ulnar Nerve (UN) in pigs. UN cross-sections were taken from seven Danish landrace pigs at three distinct locations: distal UN, proximal UN and at the dorsal cutaneous branch of the UN (DCBUN). The nerve diameter, fascicle diameter and number, number of fibres and fibre size were quantified. The UN diameter was larger in the proximal section compared to the distal segment and the DCBUN. The proximal branch also had a more significant number of fascicles (median: 15) than the distal (median: 10) and the DCBUN (median: 11) segments. Additionally, the mean fascicle diameter was smaller at the DCBUN (mean: 165 μm) than at the distal (mean: 197 μm) and proximal (mean: 199 μm) segments of the UN. Detailed knowledge of the microscopical structure of the UN in pigs is critical for further studies investigating neural interface designs and computational models of the peripheral nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ahe.12972 | DOI Listing |