A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification and characterization of the conformation and size of amyloid-β (42) oligomers targeting the receptor LilrB2. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Experimental observations revealed that the amyloid-β 42 oligomer (AβO) can directly bind to the LilrB2 D1D2(LDD) receptor with nanomolar-affinity, leading to changes in synaptic plasticity and cognitive deficits. However, the dependence of neurotoxicity on the morphology, size, and aggregation stage (SP1, SP2) of AβO, as well as the specific molecular mechanism of AβO-LDD interaction, remain uncertain. To address these uncertainties, we investigated the interaction between the LDD neuroreceptor and AβO with different Aβ42 species (nontoxic species, toxic species, and protofibril) and sizes. Our results showed that the LDD selectively binds AβO species rather than the Aβ42 monomer, accommodating various Aβ42 dimers and trimers as well as SP2 AβO, in a specific pose in the pocket of the LDD receptor (region I). Additionally, protofibrils with exposed β1/β2 regions can also bind to region I of the LDD receptor, as observed experimentally (Cao, , , 2018, , 1213; and Aim , , 2021, , 3451). More extensively, we identified two additional regions of the LDD receptor, regions II and III, suitable for binding to larger AβO species at the SP1 with different molecular weights and conformations, accounting for the stronger binding strength obtained experimentally. We suggest that the two regions are more competitive than region I in causing toxicity by AβO binding. The detailed and systematic characterization for the complexes generated between the LDD receptor and various AβO species, including the protofibril, offers deep insight into the dependence of neurotoxicity on the AβO size and conformation at the molecular level, and provides novel and specific targets for drug design of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02746eDOI Listing

Publication Analysis

Top Keywords

ldd receptor
16
aβo species
12
aβo
9
dependence neurotoxicity
8
sp2 aβo
8
receptor
6
ldd
6
species
6
identification characterization
4
characterization conformation
4

Similar Publications