A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Applicability of machine learning models for the assessment of long-term pollutant leaching from solid waste materials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Column leaching tests are a common approach for evaluating the leaching behavior of contaminated soil and waste materials, which are often reused for various construction purposes. Standardized up-flow column leaching tests typically require about 7 days of laboratory work to evaluate long-term leaching behavior accurately. To reduce testing time, we developed linear and ensemble models based on parametric and non-parametric Machine Learning (ML) techniques. These models predict leachate concentrations of relevant chemical compounds at different Liquid-to-Solid ratios (LS) based on measurements at lower LS values. The ML models were trained using 82 column leaching test samples for Construction and Demolition Waste materials collected in Germany during the last two decades. R-Squared values measuring models' performance are as follows: Sulfate = 0.94, Vanadium = 0.97, Chromium = 0.82, Copper = 0.92, group of 15 (US-EPA) PAHs = 0.98 (values averaged over predictive models for LS 2 and 4). Sensitivity analysis utilizing the Shapley Additive Explanation value indicates that in addition to the concentrations of the considered compound at LS<=1, electrical conductivity and pH are the most critical features of each model, while concentrations of other compounds also play a minor role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.09.001DOI Listing

Publication Analysis

Top Keywords

waste materials
12
column leaching
12
machine learning
8
leaching tests
8
leaching behavior
8
leaching
6
models
5
applicability machine
4
learning models
4
models assessment
4

Similar Publications