Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After decades of investigation, point cloud registration is still a challenging task in practice, especially when the correspondences are contaminated by a large number of outliers. It may result in a rapidly decreasing probability of generating a hypothesis close to the true transformation, leading to the failure of point cloud registration. To tackle this problem, we propose a transformation estimation method, named Hunter, for robust point cloud registration with severe outliers. The core of Hunter is to design a global-to-local exploration scheme to robustly find the correct correspondences. The global exploration aims to exploit guided sampling to generate promising initial alignments. To this end, a hypergraph-based consistency reasoning module is introduced to learn the high-order consistency among correct correspondences, which is able to yield a more distinct inlier cluster that facilitates the generation of all-inlier hypotheses. Moreover, we propose a preference-based local exploration module that exploits the preference information of top- k promising hypotheses to find a better transformation. This module can efficiently obtain multiple reliable transformation hypotheses by using a multi-initialization searching strategy. Finally, we present a distance-angle based hypothesis selection criterion to choose the most reliable transformation, which can avoid selecting symmetrically aligned false transformations. Experimental results on simulated, indoor, and outdoor datasets, demonstrate that Hunter can achieve significant superiority over the state-of-the-art methods, including both learning-based and traditional methods (as shown in Fig. 1). Moreover, experimental results also indicate that Hunter can achieve more stable performance compared with all other methods with severe outliers.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3312592DOI Listing

Publication Analysis

Top Keywords

point cloud
16
cloud registration
16
severe outliers
12
high-order consistency
8
registration severe
8
correct correspondences
8
reliable transformation
8
hunter achieve
8
hunter
5
transformation
5

Similar Publications

Effects of location- and object-based attention on sensory processing have been mostly studied in isolation leaving the relations between them less well understood. In an EEG experiment, temporal dynamics of location- and object-based attention were investigated with a probabilistic spatial cueing task to test temporal differences between sensory enhancement of two locations in one object. Stimuli consisted of two vertical rectangles/bars filled with a random noise pattern.

View Article and Find Full Text PDF

3D Structural Phenotype of the Optic Nerve Head in Glaucoma and Myopia - A Key to Improving Glaucoma Diagnosis in Myopic Populations.

Am J Ophthalmol

September 2025

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta

Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.

Design: Retrospective cross-sectional study.

Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').

View Article and Find Full Text PDF

Background And Objectives: Stroke is a leading cause of long-term disability. Etanercept, a competitive tumor necrosis factor-α inhibitor, has been proposed as a potential treatment for post-stroke impairments when given through a perispinal subcutaneous injection. We aimed to evaluate the safety and efficacy of perispinal etanercept in patients with chronic stroke.

View Article and Find Full Text PDF