Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CFTR (cystic fibrosis transmembrane conductance regulator) modulator drugs restore function to mutant channels in patients with cystic fibrosis (CF) and lead to improvements in body mass index and lung function. Although it is anticipated that early childhood treatment with CFTR modulators will significantly delay or even prevent the onset of advanced lung disease, lung neutrophils and inflammatory cytokines remain high in patients with CF with established lung disease despite modulator therapy, underscoring the need to identify and ultimately target the sources of this inflammation in CF lungs. To determine whether CF lungs, like chronic obstructive pulmonary disease (COPD) lungs, harbor potentially pathogenic stem cell "variants" distinct from the normal p63/Krt5 lung stem cells devoted to alveolar fates, to identify specific variants that might contribute to the inflammatory state of CF lungs, and to assess the impact of CFTR genetic complementation or CFTR modulators on the inflammatory variants identified herein. Stem cell cloning technology developed to resolve pathogenic stem cell heterogeneity in COPD and idiopathic pulmonary fibrosis lungs was applied to end-stage lungs of patients with CF (three homozygous CFTR:F508D, one CFTR F508D/L1254X; FEV, 14-30%) undergoing therapeutic lung transplantation. Single-cell-derived clones corresponding to the six stem cell clusters resolved by single-cell RNA sequencing of these libraries were assessed by RNA sequencing and xenografting to monitor inflammation, fibrosis, and mucin secretion. The impact of CFTR activity on these variants after CFTR gene complementation or exposure to CFTR modulators was assessed by molecular and functional studies. End-stage CF lungs display a stem cell heterogeneity marked by five predominant variants in addition to the normal lung stem cell, of which three are proinflammatory both at the level of gene expression and their ability to drive neutrophilic inflammation in xenografts in immunodeficient mice. The proinflammatory functions of these three variants were unallayed by genetic or pharmacological restoration of CFTR activity. The emergence of three proinflammatory stem cell variants in CF lungs may contribute to the persistence of lung inflammation in patients with CF with advanced disease undergoing CFTR modulator therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870857PMC
http://dx.doi.org/10.1164/rccm.202305-0818OCDOI Listing

Publication Analysis

Top Keywords

stem cell
32
cftr modulators
16
cystic fibrosis
12
cftr
11
stem
9
lungs
9
cell
8
cell variants
8
fibrosis lungs
8
lung disease
8

Similar Publications

Post-transplant lymphoproliferative disorder is a rare and serious complication of organ and stem cell transplant secondary to immunosuppressive therapies, most commonly of monomorphic B-cell subtype. Here we describe the first reported case of a pediatric heart transplant patient who developed both monomorphic B-cell and nondestructive PTLD with plasmacytic hyperplasia followed by an unrelated case of monomorphic T-cell and nondestructive PTLD with plasmacytic hyperplasia, which later relapsed. We detail the patient's risk factors for development of PTLD and her successful treatment regimens.

View Article and Find Full Text PDF

Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.

View Article and Find Full Text PDF

Pediatric pancreatic neuroblastoma is a rare cancer in children, with only limited cases available in the literature. We report a case of a 4-year-old girl diagnosed with high-risk pancreatic neuroblastoma. The girl was treated with induction chemotherapy followed by autologous stem cell transplant and maintenance with 13-cis-retinoic acid.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF