A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Emergence of belief-like representations through reinforcement learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To behave adaptively, animals must learn to predict future reward, or value. To do this, animals are thought to learn reward predictions using reinforcement learning. However, in contrast to classical models, animals must learn to estimate value using only incomplete state information. Previous work suggests that animals estimate value in partially observable tasks by first forming "beliefs"-optimal Bayesian estimates of the hidden states in the task. Although this is one way to solve the problem of partial observability, it is not the only way, nor is it the most computationally scalable solution in complex, real-world environments. Here we show that a recurrent neural network (RNN) can learn to estimate value directly from observations, generating reward prediction errors that resemble those observed experimentally, without any explicit objective of estimating beliefs. We integrate statistical, functional, and dynamical systems perspectives on beliefs to show that the RNN's learned representation encodes belief information, but only when the RNN's capacity is sufficiently large. These results illustrate how animals can estimate value in tasks without explicitly estimating beliefs, yielding a representation useful for systems with limited capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513382PMC
http://dx.doi.org/10.1371/journal.pcbi.1011067DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
animals learn
8
learn estimate
8
animals estimate
8
estimating beliefs
8
animals
5
emergence belief-like
4
belief-like representations
4
representations reinforcement
4
learning behave
4

Similar Publications