A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using a Bayesian model of the joint distribution of pain and time on medication to decide on pain medication for neuropathy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The PAIN-CONTRoLS trial compared four medications in treating Cryptogenic sensory polyneuropathy. The primary outcome was a utility function that combined two outcomes, patients' pain score reduction and patients' quit rate. However, additional analysis of the individual outcomes could also be leveraged to inform selecting an optimal medication for future patients. We demonstrate how joint modeling of longitudinal and time-to-event data from PAIN-CONTRoLS can be used to predict the effects of medication in a patient-specific manner and helps to make patient-focused decisions. A joint model was used to evaluate the two outcomes while accounting for the association between the longitudinal process and the time-to-event processes. Results suggested no significant association between the patients' pain scores and time to the medication quit in the PAIN-CONTRoLS study, but the joint model still provided robust estimates and a better model fit. Using the model estimates, given patients' baseline characteristics, a drug profile on both the pain reduction and medication time could be obtained for each drug, providing information on how likely they would quit and how much pain reduction they should expect. Our analysis suggested that drugs viable for one patient may not be beneficial for others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491414PMC
http://dx.doi.org/10.1080/23737484.2023.2212262DOI Listing

Publication Analysis

Top Keywords

time medication
8
patients' pain
8
joint model
8
pain reduction
8
pain
6
medication
6
bayesian model
4
joint
4
model joint
4
joint distribution
4

Similar Publications