Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To improve the viscoelasticity of zein in gluten-free dough, ethanol-plasticization and extrusion modification were employed. The peak viscosity of UZS (unextruded zein-starch) flour and EZS (extruded zein-starch) flour with ethanol (10 %, v/v) increased from 1340.0 to 1996.5 mPa·s and 1336.3 to 2291.5 mPa·s, and the bound bromophenol blue increased from 7.1 μg to 10.6 μg and 5.3 μg to 5.9 μg, respectively. Ethanol-plasticization enhanced zein's hydrophobic interactions and promoted zein network development, thus improving dough compatibility. However, the dense structure of the extruded zein made ethanol inaccessible to the interior, and the structural improvement on extruded zein-starch dough was limited. A model was developed to explain the influences of extrusion and ethanol-plasticization on the behavior of zein in the dough. Extrusion reduces the fiber-forming ability of zein, while ethanol-plasticization facilitates extensive fibrous network formation. This study provides a sound basis for the development of zein in gluten-free foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137351 | DOI Listing |