98%
921
2 minutes
20
The trustworthiness of a system is not just about proving the identity or integrity of the hardware but also extends to the data, control, and management planes of communication between devices and the software they are running. This trust in data and device integrity is desirable for Internet of Things (IoT) systems, especially in critical environments. In this study, we developed a security framework, IoTAttest, for building IoT systems that leverage the Trusted Platform Module 2.0 and remote attestation technologies to enable the establishment of IoT devices' collected data and control plan traffic integrity. After presenting the features and reference architecture of IoTAttest, we evaluated the privacy preservation and validity through the implementation of two proof-of-concept IoT applications that were designed by two teams of university students based on the reference architecture. After the development, the developers answered open questions regarding their experience and perceptions of the framework's usability, limitations, scalability, extensibility, potential, and security. The results indicate that IoTAttest can be used to develop IoT systems with effective attestation to achieve device and data integrity. The proof-of-concept solutions' outcomes illustrate the functionalities and performance of the IoT framework. The feedback from the proof-of-concept developers affirms that they perceived the framework as usable, scalable, extensible, and secure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490583 | PMC |
http://dx.doi.org/10.3390/s23177532 | DOI Listing |
J Multidiscip Healthc
September 2025
Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Department of Life Science (Food Science and Technology Division), GITAM University, Visakhapatnam, Andhra Pradesh, India.
Drying is a critical unit operation in food processing, essential for extending shelf life, ensuring microbial safety, and preserving the nutritional and sensory attributes of food products. However, conventional convective drying techniques are often energy-intensive and lead to undesirable changes such as texture degradation, loss of bioactive compounds, and reduced product quality, thereby raising concerns regarding their sustainability and efficiency. In response, recent advancements have focused on the development of innovative drying technologies that offer energy-efficient, rapid, and quality-preserving alternatives.
View Article and Find Full Text PDFPhotoacoustics
October 2025
Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:
This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.
View Article and Find Full Text PDFPLoS One
September 2025
Artificial Intelligence Research and Innovation Lab - AIRIL, Dhaka, Bangladesh.
Due to limited literacy among root-level farmers, hydroponic farming in Bangladesh faces significant challenges. Therefore, there is a demand for easy-to-use technical systems to help farmers to monitor and operate smart systems. To address the issue, this study introduces a robust hydroponic system that provides automatic guidelines, monitoring, and a disease detection system.
View Article and Find Full Text PDF