A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Study on the Migration Behaviors of Magnesium Oxysulfate Nano-Whiskers in Polypropylene Composites with Surface Modification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, surface modification aimed to enhance the compatibility between a hydrophilic inorganic filler and polypropylene (PP) matrix using hydrophobic treatment. Lauric acid, butyl acrylate, and maleic anhydride were employed to modify the filler surface. After treatment, inorganic filler/PP composites were produced using melt-mixing and extrusion-injection molding processes. The study focused on investigating compatibility and migration behavior between the filler and matrix. The findings indicated that hydrophobic modification, specifically with butyl acrylate and maleic anhydride, improved migration issues in nano-whisker, while maintaining favorable mechanical properties even under accelerated thermal aging. However, excessive hydrophobicity induced by superhydrophobic treatment using lauric acid led to reduced compatibility with the matrix, compromising its effectiveness. Consequently, the study revealed the potential of surface modification to enhance interfacial properties and mitigate migration concerns in PP composites for automotive applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488912PMC
http://dx.doi.org/10.3390/ma16175899DOI Listing

Publication Analysis

Top Keywords

surface modification
12
treatment lauric
8
lauric acid
8
butyl acrylate
8
acrylate maleic
8
maleic anhydride
8
study
4
study migration
4
migration behaviors
4
behaviors magnesium
4

Similar Publications