Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488451PMC
http://dx.doi.org/10.3390/molecules28176201DOI Listing

Publication Analysis

Top Keywords

molecular biology
12
field-flow fractionation
8
biology biotechnology
8
separate analytes
8
biology
5
molecular
4
fractionation molecular
4
biotechnology field-flow
4
fff
4
fractionation fff
4

Similar Publications

Background: Pulmonary hypertension (PH) is a systemic illness with increasingly subtle disease manifestations including sleep disruption. Patients with PH are at increased risk for disturbances in circadian biology, although to date there is no data on "morningness" or "eveningness" in pulmonary vascular disease.

Research Questions: Our group studied circadian rhythms in PH patients based upon chronotype analysis, to explore whether there is a link between circadian parameters and physiologic risk-stratifying factors to inform novel treatment strategies in patients with PH?

Study Design And Methods: We serially recruited participants from July 2022 to March 2024, administering in clinic the Munich Chronotype Questionnaire (MCTQ).

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Horizontal Gene Transfer and Recombination in Cyanobacteriota.

Annu Rev Microbiol

September 2025

4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.

Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.

View Article and Find Full Text PDF

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF