Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Several preclinical studies about a novel pulsed-thulium:yttrium-aluminum-garnet (p-Tm:YAG) device have been published, demonstrating its possible clinical relevance.
Methods: We systematically reviewed the reality and expectations for this new p-Tm:YAG technology. A PubMed, Scopus and Embase search were performed. All relevant studies and data identified in the bibliographic search were selected, categorized, and summarized.
Results: Tm:YAG is a solid state diode-pumped laser that emits at a wavelength of 2013 nm, in the infrared spectrum. Despite being close to the Ho:YAG emission wavelength (2120 nm), Tm:YAG is much closer to the water absorption peak and has higher absorption coefficient in liquid water. At present, there very few evaluations of the commercially available p-Tm:YAG devices. There is a lack of information on how the technical aspects, functionality and pulse mechanism can be maximized for clinical utility. Available preclinical studies suggest that p-Tm:YAG laser may potentially increase the ablated stone weight as compared to Ho:YAG under specific condition and similar laser parameters, showing lower retropulsion as well. Regarding laser safety, a preclinical study observed similar absolute temperature and cumulative equivalent minutes at 43° C as compared to Ho:YAG. Finally, laser-associated soft-tissue damage was assessed at histological level, showing similar extent of alterations due to coagulation and necrosis when compared with the other clinically relevant lasers.
Conclusions: The p-Tm:YAG appears to be a potential alternative to the Ho:YAG and TFL according to these preliminary laboratory data. Due to its novelty, further studies are needed to broaden our understanding of its functioning and clinical applicability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00345-023-04580-z | DOI Listing |