Immunofluorescence Imaging of Neutrophil Extracellular Traps in Human and Mouse Tissues.

J Vis Exp

Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg; Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg;

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neutrophil extracellular traps (NETs) are released by neutrophils as a response to bacterial infection or traumatic tissue damage but also play a role in autoimmune diseases and sterile inflammation. They are web-like structures composed of double-stranded DNA filaments, histones, and antimicrobial proteins. Once released, NETs can trap and kill extracellular pathogens in blood and tissue. Furthermore, NETs participate in homeostatic regulation by stimulating platelet adhesion and coagulation. However, the dysregulated production of NETs has also been associated with various diseases, including sepsis or autoimmune disorders, which makes them a promising target for therapeutic intervention. Apart from electron microscopy, visualizing NETs using immunofluorescence imaging is currently one of the only known methods to demonstrate NET interactions in tissue. Therefore, various staining methods to visualize NETs have been utilized. In the literature, different staining protocols are described, and we identified four key components showing high variability between protocols: (1) the types of antibodies used, (2) the usage of autofluorescence-reducing agents, (3) antigen retrieval methods, and (4) permeabilization. Therefore, in vitro immunofluorescence staining protocols were systemically adapted and improved in this work to make them applicable for different species (mouse, human) and tissues (skin, intestine, lung, liver, heart, spinal disc). After fixation and paraffin-embedding, 3 µm thick sections were mounted onto slides. These samples were stained with primary antibodies for myeloperoxidase (MPO), citrullinated histone H3 (H3cit), and neutrophil elastase (NE) according to a modified staining protocol. The slides were stained with secondary antibodies and examined using a widefield fluorescence microscope. The results were analyzed according to an evaluation sheet, and differences were recorded semi-quantitatively. Here, we present an optimized NET staining protocol suitable for different tissues. We used a novel primary antibody to stain for H3cit and reduced non-specific staining with an autofluorescence-reducing agent. Furthermore, we demonstrated that NET staining requires a constant high temperature and careful handling of samples.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65272DOI Listing

Publication Analysis

Top Keywords

immunofluorescence imaging
8
neutrophil extracellular
8
extracellular traps
8
staining protocols
8
staining protocol
8
net staining
8
staining
7
nets
6
imaging neutrophil
4
traps human
4

Similar Publications

Purpose: ImmunoPET imaging of PD-L1 has emerged as a promising strategy for patient stratification and treatment response monitoring in immunotherapy. This study aimed to evaluate [Zr]Zr-DFO-Durvalumab in noninvasive imaging of PD-L1 expression in non-small cell lung cancer (NSCLC) and bladder cancer.

Materials And Methods: Durvalumab was conjugated with -SCN-Bn-DFO and labeled with [Zr]Zr-oxalate, achieving high radiochemical purity (> 99 %) and stability.

View Article and Find Full Text PDF

Aim: To investigate the functional significance of mitophagy in age-related osteogenic decline and the underlying mechanisms using in vivo and in vitro models.

Materials And Methods: An alveolar bone defect model in aged mice and a serial passaging-induced ageing model of human periodontal ligament stem cells (PDLSCs) were established. Osteogenic potential in mice was assessed by micro-CT, immunofluorescence, immunohistochemical analyses and histological staining.

View Article and Find Full Text PDF

GLP-1R activation restores Gas6-driven efferocytosis in senescent foamy macrophages to promote neural repair.

Redox Biol

September 2025

Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec

Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.

View Article and Find Full Text PDF

Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: White matter injury (WMI) following ischemic stroke represents a critical pathological determinant of persistent neurological impairment, with current therapeutic options remaining limited. Buyang Huanwu Decoction (BYHWD), a time-honored formulation historically deployed in traditional Chinese medicine to address post-stroke sequelae, exhibits documented neuroprotective efficacy; nevertheless, its mechanistic actions governing post-ischemic white matter restoration and remyelination are yet to be fully deciphered.

Aim Of The Study: This study aimed to elucidate whether BYHWD facilitates post-ischemic white matter restoration via TREM2-dependent mechanisms.

View Article and Find Full Text PDF