Trichocoleus desertorum isolated from Negev desert petroglyphs: Characterization, adaptation and bioerosion potential.

Sci Total Environ

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; School of Sustainability and Climate Ch

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Negev petroglyphs are considered valuable cultural heritage sites, but unfortunately, they are exposed to deterioration processes caused by anthropogenic and natural forces. Despite the many studies that have already pointed to the role of cyanobacteria in biogenic rock weathering, the knowledge involved in the process is still lacking. In this study, a cyanobacterial strain was isolated from the Negev Desert petroglyphs aiming to reveal its involvement in geochemical cycles and in the weathering processes of the rock substrate. The strain was characterized using morphological, molecular, and microscopic studies. The morphological research revealed a green-bluish, bundle-forming filamentous strain characterized by trichomes embedded in a common sheath. A combination of Nanopore and Illumina sequencing technologies facilitated the assembly of a near-complete genome containing 5,458,034 base pairs. A total of 5027 coding sequences were revealed by implementing PROKKA software. Annotation of five replicas of the 16S ribosomal RNA genes revealed that the Negev cyanobacteria isolate is closely (99.73 %) related to Trichocoleus desertorum LSB90_MW403957 isolated from the Sahara Desert, Algeria. The local strain was thus named Trichocoleus desertorum NBK24 CP116619. Several gene sequences that code for possible environmental adaptation mechanisms were found. Our study also identified genes for membrane transporters involved in the exchange of chemical elements, suggesting a possible interaction with rock minerals. Microscopic observations of T. desertorum NBK24 CP116619 infected onto calcareous stone slabs under laboratory conditions demonstrated the effect of the isolated cyanobacteria on stone surface degradation. In conclusion, the findings of this study further our understanding of terrestrial cyanobacterial genomes and functions and highlight the role of T. desertorum NBK24 CP116619 in stone weathering processes. This information may contribute to the creation of efficient restoration strategies for stone monuments affected by cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166739DOI Listing

Publication Analysis

Top Keywords

trichocoleus desertorum
12
desertorum nbk24
12
nbk24 cp116619
12
isolated negev
8
negev desert
8
desert petroglyphs
8
weathering processes
8
strain characterized
8
isolated
4
desertorum isolated
4

Similar Publications

Trichocoleus desertorum isolated from Negev desert petroglyphs: Characterization, adaptation and bioerosion potential.

Sci Total Environ

December 2023

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; School of Sustainability and Climate Ch

The Negev petroglyphs are considered valuable cultural heritage sites, but unfortunately, they are exposed to deterioration processes caused by anthropogenic and natural forces. Despite the many studies that have already pointed to the role of cyanobacteria in biogenic rock weathering, the knowledge involved in the process is still lacking. In this study, a cyanobacterial strain was isolated from the Negev Desert petroglyphs aiming to reveal its involvement in geochemical cycles and in the weathering processes of the rock substrate.

View Article and Find Full Text PDF

Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer.

View Article and Find Full Text PDF

Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions.

View Article and Find Full Text PDF