Semiempirical Methods for Molecular Systems in Strong Magnetic Fields.

J Chem Theory Comput

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A general scheme is presented to extend semiempirical methods to include the effects of arbitrary strength magnetic fields, while maintaining computational efficiency. The approach utilizes three main modifications; a London atomic orbital (LAO) basis set is introduced, field-dependent kinetic energy corrections are added to the model Hamiltonian, and spin-Zeeman interaction energy terms are included. The approach is applied to the widely available density-functional tight-binding method GFN1-xTB. Considering the basis set requirements for the kinetic energy corrections in a magnetic field leads to two variants: a single-basis approach GFN1-xTB-M0 and a dual-basis approach GFN1-xTB-M1. The LAO basis in the latter includes the appropriate nodal structure for an accurate representation of the kinetic energy corrections. The variants are assessed by benchmarking magnetizabilities and nuclear magnetic resonance shielding constants calculated using weak magnetic fields. Remarkably, the GFN1-xTB-M1 approach also exhibits excellent performance for strong fields, || ≤ 0.2 ( = 2.3505 × 10 T), recovering exotic features such as the para- to dia-magnetic transition in the BH molecule and the preferred electronic configuration, molecular conformation, and orientation of benzene. At stronger field strengths, || > 0.2, a degradation in the quality of the results is observed. The utility of GFN1-xTB-M1 is demonstrated by performing conformer searches in a range of field strengths for the cyclooctatetraene molecule, with GFN1-xTB-M1 capturing the transition from tub to planar conformations at high field, consistent with much more computationally demanding current-density functional theory calculations. Magnetically induced currents are also shown to be well described for the benzene and infinitene molecules, the latter demonstrating the flexibility and computational efficiency of the approach. The GFN1-xTB-M1 approach is a useful tool for the study of structure, conformation, and dynamics of large systems in magnetic fields at the semiempirical level as well as for preoptimization of molecular structure in ab initio calculations, enabling more efficient exploration of complex potential energy surfaces and reactivity in the presence of external fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536997PMC
http://dx.doi.org/10.1021/acs.jctc.3c00671DOI Listing

Publication Analysis

Top Keywords

magnetic fields
16
kinetic energy
12
energy corrections
12
semiempirical methods
8
computational efficiency
8
efficiency approach
8
lao basis
8
basis set
8
approach gfn1-xtb-m1
8
gfn1-xtb-m1 approach
8

Similar Publications

We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.

View Article and Find Full Text PDF

Embodied intelligence in soft robotics offers unprecedented capabilities for operating in uncertain, confined, and fragile environments that challenge conventional technologies. However, achieving true embodied intelligence-which requires continuous environmental sensing, real-time control, and autonomous decision-making-faces challenges in energy management and system integration. We developed deformation-resilient flexible batteries with enhanced performance under magnetic fields inherently present in magnetically actuated soft robots, with capacity retention after 200 cycles improved from 31.

View Article and Find Full Text PDF

We present the first constraints on primordial magnetic fields from the Lyman-α forest using full cosmological hydrodynamic simulations. At the scales and redshifts probed by the data, the flux power spectrum is extremely sensitive to the extra power induced by primordial magnetic fields in the linear matter power spectrum, at a scale that we parametrize with k_{peak}. We rely on a set of more than a quarter million flux models obtained by varying thermal and reionization histories and cosmological parameters.

View Article and Find Full Text PDF

Femtosecond laser excitation of nanometer thin heterostructures comprising a heavy metal and a magnetically ordered material is known to result in the emission of terahertz radiation. However, the nature of the emitted radiation from heavy metal/antiferromagnet heterostructures has sparked debates and controversies in the literature. Here, we unambiguously separate spin and charge contributions from Pt/NiO heterostructures by introducing an unprecedented methodology combining high external magnetic fields with a symmetry analysis of the emitted terahertz polarization.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF