A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease. | LitMetric

Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease.

Mamm Genome

Genomics Division, Yoda Lifeline Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add On, Ameerpet, Hyderabad, 500016, India.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-023-10017-0DOI Listing

Publication Analysis

Top Keywords

genetic determinants
8
global screening
8
screening array
8
early detection
8
coronary artery
8
artery disease
8
dyslipidemia
8
associated dyslipidemia
8
cart manhattan
8
manhattan plots
8

Similar Publications