Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The regulation of flowering time is typically governed by transcription factors or epigenetic modifications. Transcript isoforms can play important roles in flowering regulation. Recently, transcript isoforms were discovered in the key genes, OfAP1 and OfTFL1, of the flowering regulatory network in Osmanthus fragrans. OfAP1-b generates a full-length isoform of OfAP1-b1 as well as an isoform of OfAP1-b2 that lacks the C-terminal domain. Although OfAP1-b2 does not possess an activation domain, it has a complete K domain that allows it to form heterodimers. OfAP1-b2 competes with OfAP1-b1 by binding with OfAGL24 to create non-functional and functional heterodimers. As a result, OfAP1-b1 promotes flowering while OfAP1-b2 delays flowering. OfTFL1 produces two isoforms located in different areas: OfTFL1-1 in the cytoplasm and OfTFL1-2 in the nucleus. When combined with OfFD, OfTFL1-1 does not enter the nucleus to repress AP1 expression, leading to early flowering. Conversely, when combined with OfFD, OfTFL1-2 enters the nucleus to repress AP1 expression, resulting in later flowering. Tissue-specific expression and functional conservation testing of OfAP1 and OfTFL1 support the new model's effectiveness in regulating flowering. Overall, this study provides new insights into regulating flowering time by the competition of isoforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809039PMC
http://dx.doi.org/10.1093/aob/mcad133DOI Listing

Publication Analysis

Top Keywords

flowering
9
flowering regulation
8
competition isoforms
8
osmanthus fragrans
8
flowering time
8
transcript isoforms
8
ofap1 oftfl1
8
combined offd
8
nucleus repress
8
repress ap1
8

Similar Publications

This study presents the first comprehensive sensory-guided investigation into the odor-active compounds of dried hemp ( L.) flowers. Using gas chromatography-olfactometry (GC-O) in combination with aroma extract dilution analysis (AEDA), 52 odor-active compounds were identified across six cannabidiol-rich cultivars.

View Article and Find Full Text PDF

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

Charged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively.

View Article and Find Full Text PDF

Background: Luminal instruments are characterized by their slender internal lumens, which make them particularly challenging to clean and dry. A common drying method used by Sterile Processing Department (SPD) technicians involves blowing high-pressure air into one end of the lumen to expel moisture. However, this process generates a significant amount of aerosols that may contain bacteria, viruses, and other microorganisms.

View Article and Find Full Text PDF

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF