A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evasive actions to prevent pedestrian collisions in varying space/time contexts in diverse urban and non-urban areas. | LitMetric

Evasive actions to prevent pedestrian collisions in varying space/time contexts in diverse urban and non-urban areas.

Accid Anal Prev

Department of Transportation and Hydraulic Engineering, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece. Electronic address:

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to identify driver-safe evasive actions associated with pedestrian crash risk in diverse urban and non-urban areas. The research focuses on the integration of quantitative methods and granular naturalistic data to examine the impacts of different driving contexts on transportation system performance, safety, and reliability. The data is derived from real-life driving encounters between pedestrians and drivers in various settings, including urban areas (UAs), suburban areas (SUAs), marked crossing areas (MCAs), and unmarked crossing areas (UMCAs). By determining critical thresholds of spatial/temporal proximity-based safety surrogate techniques, vehicle-pedestrian conflicts are clustered through a K-means algorithm into different risk levels based on drivers' evasive actions in different areas. The results of the data analysis indicate that changing lanes is the key evasive action employed by drivers to avoid pedestrian crashes in SUAs and UMCAs, while in UAs and MCAs, drivers rely on soft evasive actions, such as deceleration. Moreover, critical thresholds for several Safety Surrogate Measures (SSMs) reveal similar conflict patterns between SUAs and UMCAs, as well as between UAs and MCAs. Furthermore, this study develops and delivers a pseudo-code algorithm that utilizes the critical thresholds of SSMs to provide tangible guidance on the appropriate evasive actions for drivers in different space/time contexts, aiming to prevent collisions with pedestrians. The developed research methodology as well as the outputs of this study could be potentially useful for the development of a driver support and assistance system in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107270DOI Listing

Publication Analysis

Top Keywords

evasive actions
20
critical thresholds
12
space/time contexts
8
diverse urban
8
urban non-urban
8
non-urban areas
8
crossing areas
8
safety surrogate
8
suas umcas
8
uas mcas
8

Similar Publications