98%
921
2 minutes
20
Aim: The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are an inbred polygenic model of childhood absence epilepsy (CAE), which, as their non-epileptic control (NEC) rats, are derived from Wistar rats. While the validity of GAERS in reproducing absence seizures is well established, its use as a model for CAE psychiatric comorbidities has been subject to conflicting findings. Differences in colonies, experimental procedures, and the use of diverse controls from different breeders may account for these disparities. Therefore, in this study, we compared GAERS, NEC, and Wistar bred in the same animal facility with commercially available Wistar (Cm Wistar) as a third control.
Methods: We performed hole board (HB) and elevated plus maze (EPM) tests that were analyzed with standard quantitative and T-pattern analysis in male, age-matched Cm Wistar and GAERS, NEC, and Wistar, bred under the same conditions, to rule out the influence of different housing factors and provide extra information on the structure of anxiety-like behavior of GAERS rats.
Results: Quantitative analysis showed that GAERS and NEC had similar low anxiety-like behavior when compared to Cm Wistar but not to Wistar rats, although a higher hole-focused exploration was revealed in NEC. T-pattern analysis showed that GAERS, NEC, and Wistar had a similar anxiety status, whereas GAERS and NEC exhibited major differences with Cm Wistar but not Wistar rats. EPM results indicated that GAERS and NEC also have similar low anxiety compared to Cm Wistar and/or Wistar rats. Nevertheless, the analysis of the T-pattern containing open-arm entry showed GAERS and Wistar to be less anxious than NEC and Cm Wistar rats.
Conclusion: To summarize, comorbid anxiety may not be present in male GAERS rats. This study also highlighted the importance of including a control Wistar group bred under the same conditions when evaluating their behavior, as using Wistar rats from commercial breeders can lead to misleading results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916429 | PMC |
http://dx.doi.org/10.1111/cns.14443 | DOI Listing |
Neurochem Res
July 2025
Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
Epidemiological studies reveal gender-specific differences in epilepsy. Childhood absence epilepsy (CAE), which is more prevalent in females, is characterized by typical absence seizures (ASs) consisting of brief periods of unconsciousness, associated with 2.5-4 Hz spike-wave discharges (SWDs) in the electroencephalogram (EEG).
View Article and Find Full Text PDFProg Neurobiol
June 2025
Department of Physiology, University of Szeged, Szeged 6720, Hungary. Electronic address:
Absence seizures (ASs), characterized by bilateral spike-and-wave discharges (SWDs), are a hallmark of idiopathic generalized epilepsies. We investigated the role of thalamocortical (TC) neurons in the generation and termination of ASs using optogenetic techniques in freely behaving GAERS rats, a well-established AS model. We demonstrate that direct depolarization of ChR2-transfected TC neurons in the ventrobasal thalamic nuclei during quiet wakefulness (QW) reliably elicits ethosuximide-sensitive ASs that have similar duration and frequency to those of spontaneous ASs, while showing little and no effect during active wakefulness (AW) and slow wave sleep (SWS), respectively.
View Article and Find Full Text PDFFront Neurol
March 2024
Clinic of Radiology, University of Münster, Münster, Germany.
Introduction: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity.
Methods: Repeated rs-fMRI measurements at 9.
Epilepsia
February 2024
Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) regulatory proteins (TARPs), γ2 (stargazin), γ3, γ4, γ5, γ7, and γ8, are a family of proteins that regulate AMPAR trafficking, expression, and biophysical properties that could have a role in the development of absence seizures. Here, we evaluated the expression of TARPs and AMPARs across the development of epilepsy in the genetic absence epilepsy rats from Strasbourg (GAERS) model of idiopathic generalized epilepsy (IGE) with absence seizures. Pre-epileptic (7-day-old), early epileptic (6-week-old), and chronically epileptic (16-week-old) GAERS, and age-matched male nonepileptic control rats (NEC) were used.
View Article and Find Full Text PDFEpilepsia Open
December 2023
Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
Objectives: Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy.
View Article and Find Full Text PDF