Twenty-four hour diurnal variation in retinal oxygen saturation.

Vision Res

University of Houston College of Optometry, 4401 Martin Luther King Blvd, Houston, TX 77204, United States. Electronic address:

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal oxygen saturation is influenced by systemic and local vasculature, intraocular pressure (IOP), and individual cellular function. In numerous retinal pathologies, early changes take place at the level of the microvasculature, thereby affecting retinal oxygenation. The purpose of this study was to investigate diurnal variations in retinal oximetry measures and evaluate the relationship with other ocular and systemic physiological processes. Healthy adults (n = 18, mean age 27 ± 5.5 years) participated. Ocular and systemic measures were collected every four hours over 24 h and included retinal oximetry, IOP, optical coherence tomography (OCT), OCT-angiography (OCTA), biometry, blood pressure, and partial pressure of oxygen. Amplitude and acrophase for retinal oxygen saturation, axial length, retinal and choroidal thickness, OCTA parameters, and mean arterial and ocular perfusion pressure (MAP, MOPP) were determined were determined using cosine fits, and multiple regression analysis was performed to compare metrics. Retinal oxygenation saturation demonstrated a significant diurnal variation with an amplitude of 5.84 ± 3.86% and acrophase of 2.35 h. Other parameters that demonstrated significant diurnal variation included IOP, MOPP, axial length, choroidal thickness, superficial vessel density, heart rate, systolic blood pressure, and MAP. Diurnal variations in retinal oxygen saturation were in-phase with choroidal thickness, IOP, and density of the superficial vascular plexus and out-of-phase with axial length and MOPP. In conclusion, retinal oxygenation saturation undergoes diurnal variations over 24 h. These findings contribute to a better understanding of intrinsic and extrinsic factors influencing oxygenation of the area surrounding the fovea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148934PMC
http://dx.doi.org/10.1016/j.visres.2023.108314DOI Listing

Publication Analysis

Top Keywords

retinal oxygen
16
oxygen saturation
16
diurnal variation
12
retinal oxygenation
12
diurnal variations
12
axial length
12
choroidal thickness
12
retinal
11
variations retinal
8
retinal oximetry
8

Similar Publications

Polymer-based gene-drug co-delivery system effectively inhibits pathologic retinal neovascularization through dual anti-inflammatory and anti-neovascular actions.

Biomaterials

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Retinal neovascularization is one of the most prevalent fundus neovascular diseases, affecting vision and potentially leading to severe complications, such as retinal detachment or irreversible blindness. Current treatments primarily involve intravitreal injections (IVT) of anti-vascular endothelial growth factor (anti-VEGF) agents. However, such treatment often requires repeated injections, develop incomplete responses, and are associated with adverse effects.

View Article and Find Full Text PDF

Dimethyl fumarate is an inhibitor of pathological angiogenesis.

Cell Signal

September 2025

School of Optometry and Vision Science, University of New South Wales, Kensington, NSW 2052, Australia. Electronic address:

Vascular endothelial growth factor (VEGF), a pro-angiogenic molecule, supports blood vessel growth during wound healing but also drives pathological neovascularization in blinding eye diseases such as neovascular age-related macular degeneration (nAMD). Dimethyl fumarate (DMFu), an FDA-approved drug for multiple sclerosis, has previously shown promising anti-inflammatory properties in retinal pigment epithelium, a crucial structure disrupted by nAMD. Here, we extend the multi-phenotypic therapeutic potential of DMFu by discerning the anti-angiogenic capabilities of DMFu in choroidal and retinal endothelial cells.

View Article and Find Full Text PDF

The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).

View Article and Find Full Text PDF

Retinal hypoxia may contribute to the development of preretinal neovascularization in patients with retinopathy of prematurity (ROP). Ciliary bodies compensate oxygen delivery to the retina, and the levels of hypoxia may vary across the peripheral avascular area in ROP. In this study, we have investigated a direct method for imaging gradient levels of retinal hypoxia at the peripheral avascular retina using a model ROP.

View Article and Find Full Text PDF

Proliferative diabetic retinopathy (PDR) is a complication of diabetic microangiopathy that can cause severe visual impairment. Due to retinal neovascularization and fibrovascular membrane (FVM) formation, inhibition of vascularization and fibrosis plays a key role in PDR. In our study, single-cell sequencing of FVMs from PDR patients identified a MARCO microglial subpopulation exhibiting both pro-angiogenic and pro-fibrotic effects.

View Article and Find Full Text PDF