98%
921
2 minutes
20
Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564830 | PMC |
http://dx.doi.org/10.1007/s00401-023-02629-2 | DOI Listing |
J Microbiol Immunol Infect
September 2025
Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan.
Background: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants and young children. The COVID-19 pandemic significantly disrupted global RSV epidemiology. This study aimed to investigate the impact of the pandemic on RSV epidemiology in northern Taiwan from 2018 to 2023.
View Article and Find Full Text PDFMol Cell Neurosci
September 2025
Department of Personalized & Molecular Medicine, Era University, Lucknow, India.
Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.
View Article and Find Full Text PDFCurr Opin Virol
September 2025
Infection Biology, Global Center for Pathogen and Human Health Research, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA. Electronic address:
Intracranial calcifications (ICCs) are a characteristic neuropathological feature of several congenital viral infections, including Zika virus (ZIKV), cytomegalovirus (CMV), and lymphocytic choriomeningitis virus (LCMV). These lesions are linked to severe neurodevelopmental outcomes, such as microcephaly, epilepsy, and cognitive deficits, yet the mechanisms underlying their formation and resolution remain unclear. ICCs are thought to arise from an imbalance in osteogenic and osteolytic signaling in the developing brain.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.
View Article and Find Full Text PDF