Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Adipose tissue radiodensity in computed tomography (CT) performed before surgeries can predict surgical difficulty. Despite its clinical importance, little is known about what influences radiodensity. This study combines desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and electrospray ionization (ESI) with machine learning to unveil how chemical composition of adipose tissue determines its radiodensity.

Methods: Patients in the study underwent abdominal surgeries. Before surgery, CT radiodensity of fat near operated sites was measured. Fifty-three fat samples were collected and analyzed by DESI-MSI, ESI, and histology, and then sorted by radiodensity, demographic parameters, and adipocyte size. A non-negative matrix factorization (NMF) algorithm was developed to differentiate between high and low radiodensities.

Results: No associations between radiodensity and patient age, gender, weight, height, or fat origin were found. Body mass index showed negative correlation with radiodensity. A substantial difference in chemical composition between adipose tissues of high and low radiodensities was observed. More radiodense tissues exhibited greater abundance of high molecular weight species, such as phospholipids of various types, ceramides, cholesterol esters and diglycerides, and about 70% smaller adipocyte size. Less radiodense tissue showed high abundance of short acyl-tail fatty acids.

Conclusions: This study unveils the connection between abdominal adipose tissue radiodensity and its chemical composition. Because the radiodensity of the fat around the surgical site is associated with surgical difficulty, it is important to understand how adipose tissue composition affects this parameter. We conclude that fat tissue with a higher content of various phospholipids and waxy lipids is more CT radiodense.

Clinical Relevance Statement: This study establishes the connection between the CT radiodensity of adipose tissue and its chemical composition. Clinicians may use this information for preoperative planning of surgical procedures, potentially modifying their surgical approach (for example, performing partial nephrectomy openly rather than laparoscopically).

Key Points: • Adipose tissue radiodensity values in computed tomography images taken prior to the surgery can potentially predict surgery difficulty. • Fifty-three human specimens were analyzed by advanced mass spectrometry, molecular imaging, and machine learning to establish the key features that determine Hounsfield units' values of adipose tissue. • The findings of this research will enable clinicians to better prepare for surgical procedures and select operative strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-09911-7DOI Listing

Publication Analysis

Top Keywords

adipose tissue
32
chemical composition
16
computed tomography
12
tissue radiodensity
12
radiodensity
11
adipose
9
tissue
9
tissue composition
8
surgical difficulty
8
electrospray ionization
8

Similar Publications

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Objective: To analyze the filum terminale (FT) of children with tethered cord syndrome (TCS) and aborted fetuses without neurological disorders in order to investigate the expression of significantly differentially expressed proteins in the FT under both pathological and physiological conditions.

Methods: According to the inclusion and exclusion criteria, 35 FT samples were selected, and the samples were subjected to immunohistochemistry and H&E staining. The data were analyzed using one-way analysis of variance, and P < 0.

View Article and Find Full Text PDF