98%
921
2 minutes
20
Background: Barth syndrome is a rare genetic disease characterized by cardiomyopathy, skeletal muscle weakness, neutropenia, growth retardation and organic aciduria. This variable phenotype is caused by pathogenic hemizygous variants of the gene on the X chromosome, which impair metabolism of the mitochondrial phospholipid cardiolipin. Although most patients are usually diagnosed in the first years of life, the extremely variable clinical picture and the wide range of clinical presentations may both delay diagnosis. This is the case reported here of a man affected with severe neutropenia, who was not diagnosed with Barth syndrome until adulthood.
Case Presentation: We describe herein a family case, specifically two Caucasian male cousins sharing the same mutation in the gene with a wide phenotypic variability: an infant who was early diagnosed with Barth syndrome due to heart failure, and his maternal cousin with milder and extremely different clinical features who has received the same diagnosis only at 33 years of age.
Conclusions: Our report supports the underestimation of the prevalence of Barth syndrome, which should be always considered in the differential diagnosis of male patients with recurrent neutropenia with or without signs and symptoms of cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467424 | PMC |
http://dx.doi.org/10.3389/fped.2023.1250772 | DOI Listing |
Front Cell Infect Microbiol
September 2025
Bacterial Resistance Research Laboratory (LABRESIS), Hospital de clínicas de Porto Alegre (HCPA), Experimental Research Center, Porto Alegre, Brazil.
Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.
View Article and Find Full Text PDFBackground And Objectives: Thymidine kinase 2 deficiency (TK2d) is an ultra-rare, progressive, and life-threatening mitochondrial myopathy caused by pathogenic variants of the thymidine kinase 2 gene. Patients often lose the ability to walk, eat, and breathe independently. There are no approved therapies; however, preclinical studies of pyrimidine nucleos(t)ide therapy have shown promising results.
View Article and Find Full Text PDFNature
September 2025
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Cardiolipin (CL) is the signature phospholipid of the inner mitochondrial membrane, where it stabilizes electron transport chain protein complexes. The final step in CL biosynthesis relates to its remodelling: the exchange of nascent acyl chains with longer, unsaturated chains. However, the enzyme responsible for cleaving nascent CL (nCL) has remained elusive.
View Article and Find Full Text PDFFront Pediatr
August 2025
Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases in Zabrze, Zabrze, Poland.
Introduction: Barth syndrome (BTHS) is an ultra-rare genetic disease caused by a mutation in the gene, located on the X chromosome. This gene codes for the protein tafazzin, which is involved in the metabolism of the mitochondrial phospholipid - cardiolipin. Symptoms of this genetic defect include dilated cardiomyopathy (DCM), skeletal myopathy, neutropenia, growth retardation, reduced cholesterol levels, increased serum lactic acid levels, and hypoglycemia in the neonatal period.
View Article and Find Full Text PDFMol Genet Metab
August 2025
Department of Medical Genetics and Genomics, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, Atran Building, 1st Floor, New York, NY 10029, USA. Electronic address:
Barth syndrome is an exceedingly rare and potentially fatal X-linked mitochondrial disease arising from pathogenic variants in TAFAZZIN (TAZ), leading to defects in mature cardiolipin synthesis and its integration into the mitochondrial inner mitochondrial membrane. Clinical features that may be severe include cardiomyopathy, cyclic neutropenia, skeletal myopathy, and growth delay. Currently, no FDA-approved therapies exist.
View Article and Find Full Text PDF