98%
921
2 minutes
20
This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-29474-w | DOI Listing |
Integr Environ Assess Manag
September 2025
Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.
View Article and Find Full Text PDFChemosphere
September 2025
Laboratory of Microbial Ecology and Bioinformatics, Biology Department, Universidade Federal de Lavras, Lavras, MG, Brazil. Electronic address:
This study assessed the bioremediation potential of four microbial consortia in soil microcosms contaminated with glyphosate, focusing on their metabolic activity and impact on microbial diversity. Among the tested consortia, Con_CC-G-isolated from Conilon Coffee soil that had remained glyphosate-free for three years-demonstrated the most pronounced effects. Microbial metabolic activity was quantified using respirometry, which tracked CO production over 140 h in both inoculated and control soils.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Agriculture and Environmental Science, University of Southern Queensland, 487-535 West St, Darling Heights, Toowoomba, QLD 4350, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, 37 Sinnathamby Blvd, Springfield Central, QLD 4300, Australia. Electronic
The continuous use of plastics is expected to increase microplastic (MP) contamination in soils, raising concerns about impacts on soil ecosystems and crop productivity. This work investigated the effects of different sizes and concentrations of polyethylene microplastics (PE-MPs) on soil properties in a controlled microcosm experiment. Microplastics of three sizes (300-600, 600-2000, and 2000-5000 µm) were tested at three concentrations (0.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2025
African Centre for Cities, University of Cape Town, Cape Town 7700, South Africa.
Africa's rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are not simply the result of urban growth but are shaped by spatial inequities, historical legacies, and systemic exclusion. Disadvantaged neighborhoods are particularly impacted, becoming epicenters of health crises.
View Article and Find Full Text PDFFEMS Microbiol Ecol
August 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, Germany.
Nitrate reduction coupled to Fe(II) oxidation (NRFeOx) contributes to Fe cycling in the estuarian sediments of the Río Tinto river (Huelva, Spain). However, it is not yet known (i) whether and which NRFeOx microorganisms can be enriched from the reduced sediment layer and (ii) how in-situ pH and salinity fluctuations affect NRFeOx. Therefore, we (i) used two different approaches such as microcosm experiments (sediment amended with either NO3-/Fe2+aq or acetate/NO3-/Fe2+aq) and enrichment cultures (medium amended with acetate/NO3-/Fe2+aq) to enrich NRFeOx microorganisms to (ii) test their salinity and pH tolerance under simulated high tide and low tide conditions.
View Article and Find Full Text PDF