98%
921
2 minutes
20
Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAlO were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAlO. X-ray diffraction confirmed the cubic spinel structure with the 3̅ space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co-doped MgAlO reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448643 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00541 | DOI Listing |
RSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDFJ Chem Phys
September 2025
August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.
The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Physics, Faculty of Education, Seiyun University, Hadhramout, Yemen. Electronic address:
In the present study, polymer composite samples were fabricated using the casting technique by incorporating varying weight percentages (0.0, 0.1, 0.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDF