98%
921
2 minutes
20
Background: Early detection and removal of bladder cancer in patients is crucial to prevent tumor recurrence and progression. Because current imaging techniques may fail to detect small lesions of in situ carcinomas, patients with bladder cancer often relapse after initial diagnosis, thereby requiring frequent follow-up and treatments.
Results: In an attempt to obtain a sensitive and high-resolution imaging modality for bladder cancer, we have developed a photoacoustic imaging approach based on the use of PEGylated gold nanorods (GNRs) as a contrast agent, functionalized with the peptide cyclic [CphgisoDGRG] (Iso4), a selective ligand of α5β1 integrin expressed by bladder cancer cells. This product (called GNRs@PEG-Iso4) was produced by a simple two-step procedure based on GNRs activation with lipoic acid-polyethyleneglycol(PEG-5KDa)-maleimide and functionalization with peptide Iso4. Biochemical and biological studies showed that GNRs@PEG-Iso4 can efficiently recognize purified integrin α5β1 and α5β1-positive bladder cancer cells. GNRs@PEG-Iso4 was stable and did not aggregate in urine or in 5% sodium chloride, or after freeze/thaw cycles or prolonged exposure to 55 °C, and, even more importantly, do not settle after instillation into the bladder. Intravesical instillation of GNRs@PEG-Iso4 into mice bearing orthotopic MB49-Luc bladder tumors, followed by photoacoustic imaging, efficiently detected small cancer lesions. The binding to tumor lesions was competed by a neutralizing anti-α5β1 integrin antibody; furthermore, no binding was observed to healthy bladders (α5β1-negative), pointing to a specific targeting mechanism.
Conclusion: GNRs@PEG-Iso4 represents a simple and robust contrast agent for photoacoustic imaging and diagnosis of small bladder cancer lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463347 | PMC |
http://dx.doi.org/10.1186/s12951-023-02028-5 | DOI Listing |
Pediatr Surg Int
September 2025
Pediatric Surgery Unit, Department of Women's and Children's Health, University of Padua, Via Nicolò Giustiniani, 35100, Padua, Italy.
Introduction: Brachytherapy has been used for the multimodal treatment of pediatric bladder-prostate rhabdomyosarcoma in the last two decades. The aim of this systematic review is to gather the current evidence about this innovative technique with a special focus on long-term outcomes.
Methods: According to PRISMA criteria, PubMed, Scopus, and Web of Science were searched for papers published between 2000 and 2022.
J Cancer Res Clin Oncol
September 2025
Cancer Treatment and Nuclear Cardiology Department, Al Azhar University, Cairo, Egypt.
Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDFCurr Opin Urol
September 2025
Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan.
Purpose Of Review: Nonmuscle-invasive bladder cancer (NMIBC) patients with BCG-unresponsive disease have limited treatment options beyond radical cystectomy. With ongoing BCG shortages and the urgent need for bladder-preserving alternatives, this review examines the emerging role of oncolytic virus therapy as a novel intravesical treatment approach for this challenging patient population.
Recent Findings: Multiple oncolytic viral platforms have entered clinical trials for NMIBC treatment, demonstrating promising efficacy and safety profiles.