A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design of a lipid nano-delivery system containing recombinant Candida albicans chitinase 3 as a potential vaccine against fungal infections. | LitMetric

Design of a lipid nano-delivery system containing recombinant Candida albicans chitinase 3 as a potential vaccine against fungal infections.

Biomed Pharmacother

Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, P

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Opportunistic fungi cause lethal systemic infections and impose high medical costs to health systems. The World Health Organization has recognized the importance of fungal infections, including them in its global priority list guiding research, development, and discovery of new therapeutic approaches. Fungal vaccine development has been proposed as one of the treatment and prevention strategies in the last decade. In this study, we present the design of a lipid antigen delivery system based on Dioctadecyldimethylammonium bromide: Monoolein (DODAB: MO) containing recombinant Candida albicans Chitinase 3 (Cht3) for modulation the immune response against fungal infections. Several DODAB:MO liposomes containing Cht3 were prepared and those prepared by the incubation method and containing 5 µg/mL Cht3 were selected due to their favorable size, ζ-potential and stability, suited for antigen delivery applications. The encapsulation of Cht3 in these liposomes resulted in a significant increase in cellular uptake compared to empty liposomes, demonstrating their efficacy in delivering the antigen. Moreover, the liposomes proved to be safe for use in immunization procedures. Subcutaneous administration of Cht3 liposomes elicited a Th1/Th17 immune response profile, associated with the production of high levels of antibodies against Cht3. These antibodies recognized both the native and the recombinant forms of the protein, opsonizing mother-yeast at the cell scars, which has the potential to disrupt cell separation and hinder yeast growth. The findings suggest that the designed lipid antigen delivery system shows promise as a potential candidate for enhancing immune responses against fungal infections, offering a valuable strategy for future fungal vaccine development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115362DOI Listing

Publication Analysis

Top Keywords

fungal infections
16
antigen delivery
12
design lipid
8
recombinant candida
8
candida albicans
8
albicans chitinase
8
fungal vaccine
8
vaccine development
8
lipid antigen
8
delivery system
8

Similar Publications