98%
921
2 minutes
20
In the last two decades, significant progress has been made in the development of more physiologically relevant organ-on-a-chip (OOC) systems that can mimic tissue microenvironments. Despite the advantages of these microphysiological systems, such as portability, ability to mimic physiological flow conditions, and reduction of the number of reagents required for preparation and detection, they lack real-time analyte detection with high accuracy. To address this limitation, biosensor technologies have been integrated with OOC systems to facilitate simultaneous analysis of different analytes with a single device. However, the integration of biosensors with OOC systems is challenging because of the competing demands of low-cost, simple fabrication processes and speed. In this study, we fabricate a glucose-sensing device and integrate it with a liver-on-a-chip (LOC) platform. A carbon black-polylactic acid-based three-electrode system was printed using fused deposit molding 3D printing technology to simplify the fabrication process. The sensitivity of the fabricated glucose biosensing device was enhanced by coating the electrodes with multi-walled carbon nanotubes. A biosensing integration study performed using a perfusion-based LOC demonstrated the stability, biocompatibility, and sensitivity of the proposed glucose sensing device. Furthermore, drug-toxicity studies conducted using the LOC platform demonstrated the ability of the device to detect a broad range of glucose concentrations and its enhanced sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300154 | DOI Listing |
Mater Today Bio
October 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Organ-on-a-chip (OoC) systems can simulate the key functions of human organs, combining microfluidics, cell culture, and biomaterials. 3D printing can be integrated into these technologies to facilitate the construction of OoC models. The high precision and layer-by-layer fabrication process of 3D printing not only enables the creation of complex structures for the microfluidic chip but also improves the cellular microenvironment within the chip by harnessing bioinks for 3D bioprinting.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.
View Article and Find Full Text PDFOrgan-on-a-chip (OoC) is a rapidly advancing technology with significant potential to revolutionize healthcare, drug discovery, and personalized medicine. OoC technologies offer cost-effective and ethical platforms that enable the acquisition of physiologically relevant data and enhance our understanding of human disease mechanisms and drug responsiveness. Over the past decade, numerous academic start-ups and spin-offs have sought to translate foundational research on OoC platforms from the lab bench to commercial and real-world applications.
View Article and Find Full Text PDFArch Toxicol
September 2025
National Institutes for Food and Drug Control, Beijing, 100050, China.
Traditional toxicological paradigms, reliant on animal testing and simplistic in vitro models, face significant limitations, including prolonged timelines, high costs, and poor translational predictability due to interspecies differences. This review highlights the transformative potential of New Approach Methodologies (NAMs) in overcoming these challenges. Key advancements include Organ-on-a-Chip (OoC) platforms that emulate human organ physiology and multi-organ crosstalk, significantly improving predictive accuracy.
View Article and Find Full Text PDFJ Int Assoc Provid AIDS Care
August 2025
Sinai Infectious Disease Center, Sinai Health System, Chicago, IL, USA.
People with a previous HIV diagnosis (PWHDx) who are out of care (OOC) (PWHDx OOC) represent a significant but often overlooked population in the United States, accounting for nearly half of new HIV transmissions annually. Emergency departments (EDs), frequently accessed by PWHDx OOC for unscheduled care, are uniquely positioned to identify and re-engage these individuals in HIV care. While ED-based HIV efforts have traditionally focused on diagnosing new infections, this paper reviews and evaluates 3 models EDs can implement to identify PWHDx OOC: routine HIV screening, health information exchange, and electronic health record alerts.
View Article and Find Full Text PDF