98%
921
2 minutes
20
Background: Cardiovascular diseases (CVDs), being the culprit for one-third of deaths globally, constitute a challenge for biomedical instrumentation development, especially for early disease detection. Pulsating arterial blood flow, providing access to cardiac-related parameters, involves the whole body. Unobtrusive and continuous acquisition of electrical bioimpedance (EBI) and photoplethysmography (PPG) constitute important techniques for monitoring the peripheral arteries, requiring novel approaches and clever means.
Methods: In this work, five peripheral arteries were selected for EBI and PPG signal acquisition. The acquisition sites were evaluated based on the signal morphological parameters. A small-data-based deep learning model, which increases the data by dividing them into cardiac periods, was proposed to evaluate the continuity of the signals.
Results: The highest sensitivity of EBI was gained for the carotid artery (0.86%), three times higher than that for the next best, the posterior tibial artery (0.27%). The excitation signal parameters affect the measured EBI, confirming the suitability of classical 100 kHz frequency (average probability of 52.35%). The continuity evaluation of the EBI signals confirmed the advantage of the carotid artery (59.4%), while the posterior tibial artery (49.26%) surpasses the radial artery (48.17%). The PPG signal, conversely, commends the location of the posterior tibial artery (97.87%).
Conclusions: The peripheral arteries are highly suitable for non-invasive EBI and PPG signal acquisition. The posterior tibial artery constitutes a candidate for the joint acquisition of EBI and PPG signals in sensor-fusion-based wearable devices-an important finding of this research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457752 | PMC |
http://dx.doi.org/10.3390/s23167111 | DOI Listing |
J ISAKOS
September 2025
UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
Objectives: The deep lateral femoral notch sign, observed in some anterior cruciate ligament (ACL) injuries, may result from valgus-compressive forces and anterior tibial translation. Since combined ACL and medial collateral ligament (MCL) injuries often involve high valgus torque, we hypothesized an association between MCL tears and the presence of a deep lateral femoral notch sign.
Methods: We conducted a retrospective cohort study of skeletally mature patients (≥14 years) who underwent primary ACL reconstruction (ACLR) and had preoperative MRIs within 3 weeks of injury.
Acta Ortop Mex
September 2025
Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario-Malvarrosa. Valencia, España.
Introduction: subtalar dislocations, typical of high-energy trauma, are classified as medial, lateral, anterior or posterior depending on the deviation of the foot in relation to the talus. Lateral dislocation accounts for 17% of the total and has a worse prognosis. Immediate reduction is required to reduce the risk of sequelae, the incidence of which is around 90%.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, Chaoyang District, China.
Injuries to the distal tibiofibular joint are often associated with ankle fractures, sports-related injuries, or instability, whereas proximal tibiofibular joint injuries are more commonly present with lateral- or posterolateral-compartment lesions of the knee. These conditions may be related to the relative motion between the tibia and fibula; however, precise movement patterns have yet to be fully elucidated. This study analyzes the relative motion of the tibia and fibula in 16 healthy adults (32 bones; 8 males and 8 females) throughout a normal gait cycle.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
Institute of Movement Sciences, Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France.
Purpose: This study aimed to evaluate the functional and radiological outcomes, complications and procedure survival in patients with posttraumatic tibial plateau deformities treated with unicondylar intra-articular tibial plateau osteotomy (UIATPO), comparing medial and lateral approaches.
Methods: A retrospective study was conducted on all patients with posttraumatic intra-articular tibial plateau deformities who underwent surgical correction at a single centre between 2016 and 2022, with a minimum follow-up of 24 months. Patient characteristics, radiological correction, patient-reported outcome measures (PROMs), including the Lysholm and knee injury and osteoarthritis outcome score (KOOS), and complications were recorded.
Knee Surg Sports Traumatol Arthrosc
September 2025
Department of Orthopaedic Surgery and Traumatology, Ghent University, Ghent, Belgium.
Purpose: Robot-assisted total knee arthroplasty (RATKA) aims to improve surgical precision and outcomes. This study compared clinical and radiological outcomes between RATKA and conventional total knee arthroplasty (CTKA).
Methods: A systematic review was conducted in accordance with PRISMA guidelines, including prospective studies (Level I/II evidence) from MEDLINE, Embase, Web of Science, and the Cochrane Library, up to 20 May 2025.