Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As a promising distributed learning paradigm, federated learning (FL) faces the challenge of communication-computation bottlenecks in practical deployments. In this work, we mainly focus on the pruning, quantization, and coding of FL. By adopting a layer-wise operation, we propose an explicit and universal scheme: FedLP-Q (federated learning with layer-wise pruning-quantization). Pruning strategies for homogeneity/heterogeneity scenarios, the stochastic quantization rule, and the corresponding coding scheme were developed. Both theoretical and experimental evaluations suggest that FedLP-Q improves the system efficiency of communication and computation with controllable performance degradation. The key novelty of FedLP-Q is that it serves as a joint pruning-quantization FL framework with layer-wise processing and can easily be applied in practical FL systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453433 | PMC |
http://dx.doi.org/10.3390/e25081205 | DOI Listing |