98%
921
2 minutes
20
Circulating tumor cells (CTCs) and circulating cancer-associated fibroblasts (cCAFs) have been individually considered strong indicators of cancer progression. However, technical limitations have prevented their simultaneous analysis in the context of CTC phenotypes different from epithelial. This study aimed to analyze CTCs and cCAFs simultaneously in the peripheral blood of 210 breast cancer patients using DAPI/pan-keratin (K)/vimentin (V)/alpha-SMA/CD29/CD45/CD31 immunofluorescent staining and novel technology-imaging flow cytometry (imFC). Single and clustered CTCs of different sizes and phenotypes (i.e., epithelial phenotype K+/V- and epithelial-mesenchymal transition (EMT)-related CTCs, such as K+/V+, K-/V+, and K-/V-) were detected in 27.6% of the samples and correlated with metastases. EMT-related CTCs interacted more frequently with normal cells and tended to occur in patients with tumors progressing during therapy, while cCAFs coincided with CTCs (mainly K+/V- and K-/V-) in seven (3.3%) patients and seemed to correlate with the presence of metastases, particularly visceral ones. This study emphasizes the advantages of imFC in the field of liquid biopsy and highlights the importance of multimarker-based analysis of different subpopulations and phenotypes of cancer progression-related cells, i.e., CTCs and cCAFs. The co-detection of CTCs and cCAFs might improve the identification of patients at higher risk of progression and their monitoring during therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453498 | PMC |
http://dx.doi.org/10.3390/cancers15164169 | DOI Listing |
Anal Chem
August 2025
Department of New Biology, DGIST, Techno jungang-daero 333, Daegu 42988, Republic of Korea.
Circulating tumor cells (CTCs) are a key biomarker in cancer diagnostics, offering critical insights into metastasis and treatment responses. Although several automated CTC isolation systems have been developed, a thorough comparison of their performance with diverse cell types remains lacking. In addition to CTCs, simultaneous tumor microenvironment (TME) analysis can be valuable for formulating cancer treatment strategies.
View Article and Find Full Text PDFHead Neck
July 2025
Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
Background: Like tumor cells, cancer-associated fibroblasts (CAFs) can enter the bloodstream and may function in systemic circulation.
Methods: Circulating CAFs (cCAFs) were isolated from the peripheral blood of head and neck squamous cell carcinoma (HNSCC) patients using CD45 depletion and detected by FAP expression using RT-qPCR. Circulating tumor cells (CTCs) were detected through the expression of epithelial markers (EPCAM, EGFR, and MET).
J Exp Clin Cancer Res
January 2025
Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
Background: The lack of predictive biomarkers contributes notably to the poor outcomes of patients with pancreatic ductal adenocarcinoma (PDAC). Cancer-associated fibroblasts (CAFs) are the key components of the prominent PDAC stroma. Data on clinical relevance of CAFs entering the bloodstream, known as circulating CAFs (cCAFs) are scarce.
View Article and Find Full Text PDFCancers (Basel)
August 2023
Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-211 Gdańsk, Poland.
Circulating tumor cells (CTCs) and circulating cancer-associated fibroblasts (cCAFs) have been individually considered strong indicators of cancer progression. However, technical limitations have prevented their simultaneous analysis in the context of CTC phenotypes different from epithelial. This study aimed to analyze CTCs and cCAFs simultaneously in the peripheral blood of 210 breast cancer patients using DAPI/pan-keratin (K)/vimentin (V)/alpha-SMA/CD29/CD45/CD31 immunofluorescent staining and novel technology-imaging flow cytometry (imFC).
View Article and Find Full Text PDFCancers (Basel)
February 2023
Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands.
Cancer-associated fibroblasts (CAFs) are important drivers in the tumor microenvironment and facilitate the growth and survival of tumor cells, as well as metastasis formation. They may travel together with tumor cells to support their survival and aid in the formation of a metastatic niche. In this study, we aimed to study circulating CAFs (cCAFs) and circulating tumor cells (CTCs) in a preclinical breast tumor model in mice in order to understand the effect of chemotherapy on cCAFs and CTC formation.
View Article and Find Full Text PDF