Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to investigate abnormalities in inhibitory cortical excitability and motor control during ballistic-targeting movements in individuals with degenerative cerebellar ataxia (DCA). Sixteen participants took part in the study (DCA group [n = 8] and healthy group [n = 8]). The resting motor-threshold and cortical silent period (cSP) were measured in the right-hand muscle using transcranial magnetic stimulation over the left primary motor cortex. Moreover, the performance of the ballistic-targeting task with right wrist movements was measured. The Scale for the Assessment and Rating of Ataxia was used to evaluate the severity of ataxia. The results indicated that the cSP was significantly longer in participants with DCA compared to that in healthy controls. However, there was no correlation between cSP and severity of ataxia. Furthermore, cSP was linked to the ballistic-targeting task performance in healthy participants but not in participants with DCA. These findings suggest that there is excessive activity in the gamma-aminobutyric acid-mediated cortical inhibitory circuit in individuals with DCA. However, this increase in inhibitory activity not only fails to contribute to the control of ballistic-targeting movement but also shows no correlation with the severity of ataxia. These imply that increased excitability in inhibitory cortical circuits in the DCA may not contribute the motor control as much as it does in healthy older adults under limitations associated with a small sample size. The study's results contribute to our understanding of motor control abnormalities in people with DCA and provide potential evidence for further research in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457313PMC
http://dx.doi.org/10.1038/s41598-023-41088-3DOI Listing

Publication Analysis

Top Keywords

inhibitory cortical
12
motor control
12
severity ataxia
12
excitability inhibitory
8
degenerative cerebellar
8
cerebellar ataxia
8
control ballistic-targeting
8
group [n = 8]
8
ballistic-targeting task
8
participants dca
8

Similar Publications

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Investigating the mechanism of gastrodin-regulated miR-128-3p in methamphetamine dependence via integrated pharmacology.

Medicine (Baltimore)

September 2025

Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.

Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.

View Article and Find Full Text PDF

Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.

View Article and Find Full Text PDF

Repetitive stress decreases norepinephrine's dynamic range in the auditory cortex.

Neuropharmacology

September 2025

Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:

Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.

View Article and Find Full Text PDF

Aberrant expression of glucose-dependent insulinotropic peptide receptors (GIPR) might regulate increased steroidogenesis in patients with ACTH-independent cortisol hypersecretion. This study investigated the presence of aberrant GIPR expression in patients with ACTH-independent cortisol hypersecretion and bilateral adrenal adenomas.Patients with bilateral adrenal adenomas, ACTH-independent CS and aberrant GIPR screened via mixed meal test were included.

View Article and Find Full Text PDF