A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cre-loxP System-Based Mouse Model for Investigating Graves' Disease and Associated Orbitopathy. | LitMetric

Cre-loxP System-Based Mouse Model for Investigating Graves' Disease and Associated Orbitopathy.

Thyroid

Graduate School of Medical Science, Brain Korea 21 Project, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graves' disease (GD), one of the most common forms of autoimmune thyroid disorders, is characterized by hyperthyroidism caused by antibodies (Abs) against the extracellular A-subunit of the thyrotropin receptor (TSHR). Various approaches have been used to create mouse models of GD, including transfected fibroblasts and immunization with plasmids or adenoviruses expressing human TSHR A-subunit (hTSHR A-subunit). These models, however, require repeated immunization and produce inconsistent results. In this study, we established a novel Cre-loxP system-based mouse model that is able to generate the hTSHR A-subunit, mimicking human GD, and characterized the histological changes in Graves' orbitopathy (GO) progression after a single injection. A Cre-loxP system-based mouse model was constructed by inserting the CAG-loxP-STOP-loxP-hTSHR A-subunit cassette into the Rosa26 locus of the mouse genome. Conditional expression of the hTSHR A-subunit was successfully achieved by intramuscular injection of the transactivator of transcription-Cre recombinase (GD mice). Blood tests for anti-TSHR Abs and the total thyroxine (T4) level were performed. Magnetic resonance imaging (MRI) was used to monitor morphological changes in the eyes. A histological examination of the thyroid gland and retrobulbar tissues was performed to observe pathological changes. Twenty-four (8 control and 16 GD) mice were investigated. All GD mice exhibited higher levels of TSHR Abs compared with the control group. Moreover, more than 80% of the mouse models showed elevated T4 levels accompanied by thyroid goiter. MRI analysis revealed an increased volume of retrobulbar tissue, while immunohistochemical staining of orbital tissues exhibited macrophage infiltration and muscle fibrosis in the GD mice, contrasting with the control group. Our novel mouse model for GD, which showed the histological features of GO, was successfully established using the Cre-loxP system. This animal model offers improved insights and contributes to advancing methodological developments for GD and GO.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2023.0299DOI Listing

Publication Analysis

Top Keywords

mouse model
16
cre-loxp system-based
12
system-based mouse
12
htshr a-subunit
12
graves' disease
8
mouse models
8
control group
8
mouse
7
a-subunit
6
model
5

Similar Publications