Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of the study was to evaluate the antibacterial activity and surface hardness of a light-activated microhybrid composite resin modified with green silver nanoparticles (AgNPs). AgNPs were synthesized using an extract and characterized through different methods such as UV-Vis, EDX, and FTIR. The obtained AgNPs were mixed with a microhybrid composite resin (Herculite XRV, Kerr Corp., Orange, CA, USA) in different concentrations: 0% (group A-control); 0.5% (group B); 1% (group C); and 1.5% (group D). A total of 120 composite resin disk-shaped samples were obtained and divided into 4 groups (n = 30) according to AgNP concentration. Each group was then divided into 2 subgroups: subgroup 1-samples were not soaked in 0.01 M NaOH solution; and subgroup 2-samples were soaked in 0.01 M NaOH solution. The antibacterial activity against was determined using a direct contact test. A digital electronic hardness tester was used to determine the composite resin's Vickers surface hardness (VH). Statistical analysis was performed using the Mann-Whitney U and Kruskal-Wallis nonparametric tests with a confidence level of 95%. Groups C and D showed higher antibacterial activity against when compared to the control group ( < 0.05). No significant differences were recorded between VH values ( > 0.05). The use of AgNPs synthesized from as a composite resin filler in 1% wt. and 1.5% wt. reduced the activity of . Soaking of the experimental composite resin decreased the antibacterial efficacy. The loading of a microhybrid composite resin with AgNPs in concentrations of 0.5% wt., 1% wt., and 1.5% wt. did not influence the surface hardness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456089PMC
http://dx.doi.org/10.3390/jfb14080402DOI Listing

Publication Analysis

Top Keywords

composite resin
28
antibacterial activity
16
surface hardness
16
microhybrid composite
12
green silver
8
silver nanoparticles
8
activity surface
8
composite
8
agnps synthesized
8
soaked 001
8

Similar Publications

This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.

View Article and Find Full Text PDF

A Commentary On: Mohamed M H, Abouauf E A, Mosallam R S. Clinical performance of class II MOD fiber reinforced resin composite restorations: an 18-month randomized controlled clinical trial. BMC Oral Health 2025;25: 159.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the inherent and after cyclic loading fracture strength of implant-supported cantilevered fixed prostheses fabricated from recently introduced additively manufactured (AM) and subtractively manufactured (SM) materials, considering variations in prosthesis height.

Materials And Methods: Three cylinder-shaped master files (20 mm long and 11 mm wide) with varying heights (7, 11, and 15 mm) and a titanium-base (Ti-base) abutment space were designed. These designs were used to fabricate a total of 144 specimens with two AM resins indicated for definitive use (Crowntec; AM-CT and Flexcera Smile Ultra+; AM-FS), one high-impact polymer composite (breCAM.

View Article and Find Full Text PDF

Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.

Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.

View Article and Find Full Text PDF

Cycloaliphatic epoxy resin (CEP) is a promising candidate for rigid housings in high-voltage composite insulators due to its superior hardness, water resistance, and interfacial adhesion compared with conventional high-temperature vulcanized silicone rubber (HTV-SR). However, the long-term insulation degradation mechanisms of CEP under corona discharge are still not fully understood. In this study, CEP, HTV-SR, and glass fiber-reinforced epoxy (GFRP) were subjected to AC corona aging using a multi-needle plate electrode.

View Article and Find Full Text PDF