98%
921
2 minutes
20
Background: Adolescent idiopathic scoliosis (AIS) affects up to 5% of the population. The efficacy of school-aged screening remains controversial since it is uncertain which curvatures will progress following diagnosis and require treatment. Patient demographics, vertebral morphology, skeletal maturity, and bone quality represent individual risk factors for progression but have yet to be integrated towards accurate prognostication. The objective of this work was to develop composite machine learning-based prediction model to accurately predict AIS curves at-risk of progression.
Methods: 1870 AIS patients with remaining growth potential were identified. Curve progression was defined by a Cobb angle increase in the major curve of ≥6° between first visit and skeletal maturity in curves that exceeded 25°. Separate prediction modules were developed for i) clinical data, ii) global/regional spine X-rays, and iii) hand X-rays. The hand X-ray module performed automated image classification and segmentation tasks towards estimation of skeletal maturity and bone mineral density. A late fusion strategy integrated these domains towards the prediction of progressive curves at first clinic visit.
Findings: Composite model performance was assessed on a validation cohort and achieved an accuracy of 83.2% (79.3-83.6%, 95% confidence interval), sensitivity of 80.9% (78.2-81.9%), specificity of 83.6% (78.8-84.1%) and an AUC of 0.84 (0.81-0.85), outperforming single modality prediction models (AUC 0.65-0.78).
Interpretation: The composite prediction model achieved a high degree of accuracy. Upon incorporation into school-aged screening programs, patients at-risk of progression may be prioritized to receive urgent specialist attention, more frequent follow-up, and pre-emptive treatment.
Funding: Funding from The Society for the Relief of Disabled Children was awarded to GKHS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470293 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2023.104768 | DOI Listing |
J Craniofac Surg
September 2025
Division of Plastic and Reconstructive Surgery Medical Center, Los Angeles, CA.
Auricular reconstruction is essential for restoring facial symmetry and achieving a well-contoured, natural-appearing ear. Traditional methods using autologous costal cartilage often delay reconstruction until around age 10, when sufficient rib cartilage is available, which can pose physical and psychological challenges for pediatric patients. Porous high-density polyethylene (PHDPE) implants offer significant advantages, including the ability to perform reconstruction earlier, reduced morbidity, improved ear definition, and the possibility of a single-stage outpatient procedure.
View Article and Find Full Text PDFSkeletal Radiol
September 2025
Department of Radiology, Hospital do Coração (HCor), Rua Desembargador Eliseu Guilherme, 53, 7th floor. CEP, São Paulo, SP, 04004-03, Brazil.
Atypical proximal tibial fractures in adolescents are rare, particularly when linked to hormonal therapy for short stature. This case series reports the clinical and imaging features of atypical proximal tibial and distal femoral physeal fractures in male adolescents undergoing combined growth hormone (GH) and aromatase inhibitor (AI) therapy for idiopathic short stature. We report three cases of skeletally immature male adolescents (ages 12-16) treated with GH and anastrozole who presented with acute leg pain following low-energy trauma during soccer.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
J Pediatr Orthop
September 2025
Scottish Rite for Children.
Background: Legg-Calvé-Perthes disease (LCPD) is a pediatric hip disorder characterized by idiopathic avascular necrosis of the femoral head. Although its etiology remains unclear, frequent observations of short stature and delayed skeletal maturation have suggested disturbance of systemic growth regulation, particularly involving the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. This study evaluates the impact of GH deficiency (GHD) and timing of GH therapy (GHT) on radiographic progression and femoral head morphology in LCPD.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Shriners Children's Philadelphia, Philadelphia, Pennsylvania.
Background: Vertebral body tethering (VBT) offers an alternative treatment for patients with idiopathic scoliosis. We present our finalized Food and Drug Administration Investigational Device Exemption (IDE) study results on VBT.
Methods: We retrospectively reviewed patients with Lenke Type IA/B curves who underwent VBT between 2011 and 2015.