A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer's Disease. | LitMetric

Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer's Disease.

Chemistry

Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, a novel zwitterionic excited-state intramolecular proton transfer system is reported, enabled by addition of 1,4,7-triazacyclononane (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold. The solvent-dependent steady-state photophysical studies, pKa measurements, and computational analysis strongly support that the ESIPT process is more efficient with two TACN groups attached to the DCM scaffold and not affected by polar protic solvents. Impressively, compound DCM-OH-2-DT exhibits a near-infrared (NIR) emission at 740 nm along with an uncommonly large Stokes shift. Moreover, DCM-OH-2-DT shows high affinity towards soluble amyloid β (Aβ) oligomers in vitro and in 5xFAD mouse brain sections, and we have successfully applied DCM-OH-2-DT for the in vivo imaging of Aβ aggregates and demonstrated its potential use as an early diagnostic agent for AD. Overall, this study can provide a general molecular design strategy for developing new zwitterionic ESIPT compounds with NIR emission in vivo imaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840928PMC
http://dx.doi.org/10.1002/chem.202302408DOI Listing

Publication Analysis

Top Keywords

zwitterionic excited-state
12
excited-state intramolecular
12
intramolecular proton
12
proton transfer
12
zwitterionic esipt
8
esipt compounds
8
dcm scaffold
8
nir emission
8
in vivo imaging
8
zwitterionic
5

Similar Publications