A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synthesis, description, and application of novel corrosion inhibitors for CS AISI1095 in 1.0 M HCl based on benzoquinoline derivatives. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to synthesize and evaluate the corrosion inhibition properties of three newly prepared organic compounds based on benzo[h]quinoline hydrazone derivatives. The compounds structure were characterised using FTIR, 1H-NMR, 13C-NMR and Mass spectroscopy. Electrochemical methods, including Potentiodynamic Polarization (PP), Electrochemical Frequency Modulation (EFM), and Electrochemical Impedance Spectroscopy (EIS) were employed to evaluate the compounds as corrosion inhibitors in HCl (1.0 M) for carbon steel (CS). Additionally, surface examination techniques such as scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to investigate the surface morphology and elemental composition of the CS before and after exposure to the synthesized compounds. The electrochemical measurements showed that compound VII achieved corrosion inhibition efficiency. SEM and EDX analysis further confirmed the creation of a passive film on the CS surface. These findings demonstrated the potential of benzo[h]quinoline hydrazone derivatives as effective organic corrosion inhibitors for CS in aggressive solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447579PMC
http://dx.doi.org/10.1038/s41598-023-39714-1DOI Listing

Publication Analysis

Top Keywords

corrosion inhibitors
12
corrosion inhibition
8
benzo[h]quinoline hydrazone
8
hydrazone derivatives
8
corrosion
5
synthesis description
4
description application
4
application novel
4
novel corrosion
4
inhibitors aisi1095
4

Similar Publications