Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440665PMC
http://dx.doi.org/10.1089/3dp.2021.0133DOI Listing

Publication Analysis

Top Keywords

three-dimensional printing
8
fully enclosed
8
sacrificial material
8
microfluidic channels
8
microfluidic devices
8
etching sacrificial
8
sacrificial materials
8
printing
5
devices
5
microfluidic
5

Similar Publications

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF

Purpose: To present a novel digital workflow (the Columbus Digital Bridge Protocol) for immediately loaded full-arch rehabilitations, integrating digital technologies throughout diagnostic, surgical and prosthetic phases, with a focus on the application of intraoral photogrammetry scanning.

Materials And Methods: The workflow presented in this article, successfully implemented in 14 patients, includes standardised clinical steps: digital diagnostic planning through matching of facial scans and CBCT data, surgical placement of four implants following tooth extraction, immediate post-surgical intraoral photogrammetry scanning using a three-step procedure (i.e.

View Article and Find Full Text PDF

The field of biomaterials has evolved rapidly with the introduction of time as a transformative factor, giving rise to four-dimensional (4D) materials that can dynamically change their structure or function in response to external stimuli. This review presents a comprehensive comparison between traditional three-dimensional (3D) and emerging 4D biomaterials, highlighting the key distinctions in design, adaptability, and functionality. We explore the development of smart biomaterials at the core of 4D systems, including stimuli-responsive polymers, shape-memory materials, and programmable hydrogels.

View Article and Find Full Text PDF

Deep-sea salt as a novel additive for 3D-printed surimi: boosting protein bonding, antioxidant capacity, and digestibility.

Food Chem X

August 2025

College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 5

Enhancing both structural integrity and nutritional properties is crucial for developing a functional three-dimensional (3D)-printed surimi formulation. Herein, deep-sea salt was used as a substitute for conventional salt to develop 3D-printed surimi. The physicochemical properties, sensory scores, microstructural examinations, chemical bonding analysis, digestion studies, and antioxidant activity of the 3D-printed surimi were systematically evaluated.

View Article and Find Full Text PDF

The miniaturization of separation platforms marks a transformative shift in analytical science, merging microfabrication, automation, and intelligent data integration to meet rising demands for portability, sustainability, and precision. This review critically synthesizes recent technological advances reshaping the field-from microinjection and preconcentration modules to compact, high-sensitivity detection systems including ultraviolet-visible (UV/Vis), fluorescence (FL), electrochemical detection (ECD), and mass spectrometry (MS). The integration of microcontrollers, AI-enhanced calibration routines, and IoT-enabled feedback loops has led to the rise of self-regulating analytical devices capable of real-time decision-making and autonomous operation.

View Article and Find Full Text PDF