98%
921
2 minutes
20
Purpose: A novel form of lung functional imaging applied for functional avoidance radiation therapy has been developed that uses 4-dimensional computed tomography (4DCT) data and image processing techniques to calculate lung ventilation (4DCT-ventilation). Lung segmentation is a common step to define a region of interest for 4DCT-ventilation generation. The purpose of this study was to quantitatively evaluate the sensitivity of 4DCT-ventilation imaging using different lung segmentation methods.
Methods And Materials: The 4DCT data of 350 patients from 2 institutions were used. Lung contours were generated using 3 methods: (1) reference segmentations that removed airways and pulmonary vasculature manually (Lung-Manual), (2) standard lung contours used for planning (Lung-RadOnc), and (3) artificial intelligence (AI)-based contours that removed the airways and pulmonary vasculature (Lung-AI). The AI model was based on a residual 3-dimensional U-Net and was trained using the Lung-Manual contours of 279 patients. We compared the Lung-RadOnc or Lung-AI with Lung-Manual contours for the entire 4DCT-ventilation functional avoidance process including lung segmentation (surface Dice similarity coefficient [Surface DSC]), 4DCT-ventilation generation (correlation), and subanalysis of 10 patients on a dosimetric endpoint (percentage of high functional volume of lung receiving ≥20 Gy [fV20{%}]).
Results: Surface DSC comparing Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI contours was 0.40 ± 0.06 and 0.86 ± 0.04, respectively. The correlation between 4DCT-ventilation images generated with Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI were 0.48 ± 0.14 and 0.85 ± 0.14, respectively. The difference in fV20[%] between 4DCT-ventilation generated with Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI was 2.5% ± 4.1% and 0.3% ± 0.5%, respectively.
Conclusions: Our work showed that using standard planning lung contours can result in significantly variable 4DCT-ventilation images. The study demonstrated that AI-based segmentations generate lung contours and 4DCT-ventilation images that are similar to those generated using manual methods. The significance of the study is that it characterizes the lung segmentation sensitivity of the 4DCT-ventilation process and develops methods that can facilitate the integration of this novel imaging in busy clinics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842520 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2023.08.017 | DOI Listing |
Multimed Man Cardiothorac Surg
September 2025
Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK
Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
September 2025
Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK
Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Radiology, Guizhou International Science and Technology Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, Guizhou China.
The generated lung nodule data plays an indispensable role in the development of intelligent assisted diagnosis of lung cancer. Existing generative models, primarily based on Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPM), have demonstrated effectiveness but also come with certain limitations: GANs often produce artifacts and unnatural boundaries, and due to dataset limitations, they struggle with irregular nodules. While DDPMs are capable of generating a diverse range of nodules, their inherent randomness and lack of control limit their applicability in tasks such as segmentation.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2025
Bosch Health Campus, Robert Bosch Hospital, Department of Cardiology and Angiology, Stuttgart, Germany.
Aims: For many years, visual assessment has been the mainstay of detecting obstructive coronary artery disease (CAD) by stress perfusion cardiovascular magnetic resonance (S-CMR). Recently, fully automated quantitative assessment of myocardial blood flow (MBF) has been introduced. The value of MBF quantification in patients with coronary chronic total occlusion (CTO) is unknown.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:
Occupational lung disease remains a serious concern among miner workers, underscoring the need for improved characterization of respirable dust. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) enables high-resolution analysis of filter samples, but accurate identification of complex, multi-constituent particles like agglomerates during direct-on-filter (DOF) analysis remains challenging. This is because standard tools for automated SEM-EDX treat each dust entity as an independent particle.
View Article and Find Full Text PDF