98%
921
2 minutes
20
Transcription factor 3 (TCF3) is a member of the basic Helix - Loop - Helix (bHLH) transcription factor (TF) family and is encoded by the TCF3 gene (also known as E2A). It has been shown that TCF3 functions as a key transcription factor in the pathogenesis of several human cancers and plays an important role in stem cell maintenance and carcinogenesis. However, the effect of TCF3 in the progression of esophageal squamous cell carcinoma (ESCC) is poorly known. In our study, TCF3 was found to express highly and correlated with cancer stage and prognosis. TCF3 was shown to promote ESCC invasion, migration, and drug resistance both from the results of in vivo and in vitro assays. Moreover, further studies suggested that TCF3 played these roles through transcriptionally regulating Inhibitor of DNA binding 1(ID1). Notably, we also found that TCF3 or ID1 was associated with ESCC stemness. Furthermore, TCF3 was correlated with the expression of cancer stemness markers CD44 and CD133. Therefore, maintaining cancer stemness might be the underlying mechanism that TCF3 transcriptionally regulated ID1 and further promoted ESCC progression and drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443991 | PMC |
http://dx.doi.org/10.1080/15384047.2023.2246206 | DOI Listing |
Blood Adv
September 2025
Institut de Recherches Cliniques de Montreal - IRCM, Montreal, Quebec, Canada.
Acute myeloid leukemia (AML) with rearrangement of the mixed lineage leukemia gene express MLL-AF9 fusion protein, a transcription factor that impairs differentiation and drives expansion of leukemic cells. We report here that the zinc finger protein GFI1 together with the histone methyltransferase LSD1 occupies the promoter and regulates expression of the lncRNA ELDR in the MLL-r AML cell line THP-1. Forced ELDR overexpression enhanced the growth inhibition of an LSD1i/ATRA combination treatment and reduced the capacity of these cells to generate leukemia in xenografts, leading to a longer leukemia-free survival.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
Univ. of Pennsylvania, Medicine, Philadelphia, Pennsylvania, United States.
Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
Service des maladies de l'appareil digestif. Centre de compétence Maladies rares « Maladies inflammatoires des voies biliaires et hépatites autoimmunes », Hôpital Huriez, Lille, France.
Primary biliary cholangitis (PBC) is a rare disease for which management long consisted of a single treatment: ursodeoxycholic acid. In 2015-2016, this disease regained interest with the first studies on obeticholic acid (FXR agonist) and then on bezafibrate (PPAR agonist). Subsequently, over the past five years, significant progress has been made in the management of PBC.
View Article and Find Full Text PDFBlood
September 2025
The University of Chicago, Chicago, Illinois, United States.
Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).
View Article and Find Full Text PDFPLoS Pathog
September 2025
Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.
View Article and Find Full Text PDF